电致发光(Electroluminescence, EL)下的光伏电池EL图像背景表现为复杂的非均匀纹理特征,且存在与裂纹相似的晶粒伪缺陷,同时裂纹表现为形状多样的多尺度特征,以上难点为检测任务带来了极大的挑战。因此,本文提出融合注意力的多尺度Faster-RCNN模型,一方面,采用改进的特征金字塔网络获取多尺度的高级语义特征图,以此来提高网络对多尺度裂纹缺陷的特征表达能力。另一方面,采用改进的注意力区域推荐网络A-RPN,提高模型对裂纹缺陷的关注并抑制复杂背景及晶粒伪缺陷的特征。同时,在RPN网络训练过程中,采用损失函数Focal loss,以此来降低训练过程中简单样本所占比重,使其更加关注难以区分的样本。实验结果表明,改进的算法使得EL图像裂纹缺陷检测的准确率提高,达到接近95%。
融合注意力的多尺度Faster RCNN的裂纹检测
作者单位信息
出版日期:2021年1月15日
摘要
参考文献
[1] Anwar S A, Abdullah M Z. Micro-crack detection of multicrystalline solar cells featuring shape analysis and support vector machines[C]//Proceedings of 2012 IEEE International Conference on Control System, Computing and Engineering, 2012: 143‒148.
[2] Su B Y, Chen H Y, Zhu Y F, et al. Classification of manufacturing defects in multicrystalline solar cells with novel feature descriptor[J]. IEEE Trans Instrum Meas, 2019, 68(12): 4675‒4688.
[3] Luo Q W, Sun Y C, Li P C, et al. Generalized completed local binary patterns for time-efficient steel surface defect classification[J]. IEEE Trans Instrum Meas, 2019, 68(3): 667‒679.
[4] Tsai D M, Chang C C, Chao S M. Micro-crack inspection in heterogeneously textured solar wafers using anisotropic diffusion[J]. Image Vis Comput, 2010, 28(3): 491‒501.
[5] Cha Y J, Choi W, Büyüköztürk O. Deep learning‐based crack damage detection using convolutional neural networks[J]. Comput Aided Civ Inf Eng, 2017, 32(5): 361‒378.
[6] Lin H, Li B, Wang X G, et al. Automated defect inspection of LED chip using deep convolutional neural network[J]. J Intell Manuf, 2019, 30(6): 2525‒2534.
[7] Duan K W, Bai S, Xie L X, et al. Centernet: keypoint triplets for object detection[C]//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision, 2019: 6568‒6577.
[8] Lin T Y, Goyal P, Girshick R, et al. Focal loss for dense object detection[C]//Proceedings of 2017 IEEE International Conference on Computer Vision, 2017: 2999‒3007.
[9] Girshick R. Fast R-CNN[C]//Proceedings of 2015 IEEE International Conference on Computer Vision, 2015: 1440‒1448.
[10] Ren S Q, He K M, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems, 2015: 91‒99.
[11] Cha Y J, Choi W, Suh G, et al. Autonomous structural visual inspection using region‐based deep learning for detecting multiple damage types[J]. Comput Aided Civ Inf Eng, 2018, 33(9): 731‒747.
[12] Gao L, Chen N N, Fan Y. Vehicle detection based on fusing multi-scale context convolution features[J]. Opto-Electron Eng, 2019, 46(4): 180331.
高琳, 陈念年, 范勇. 融合多尺度上下文卷积特征的车辆目标检测[J]. 光电工程, 2019, 46(4): 180331.
[13] Liu S, Qi L, Qin H F, et al. Path aggregation network for instance segmentation[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 8759‒8768.
[14] Corbetta M, Shulman G L. Control of goal-directed and stimulus-driven attention in the brain[J]. Nat Rev Neurosci, 2002, 3(3): 201‒215.
[15] Frazão M, Silva J A, Lobato K, et al. Electroluminescence of silicon solar cells using a consumer grade digital camera[J]. Measurement, 2017, 99: 7‒12.
[16] Hu J, Shen L, Sun G. Squeeze-and-excitation networks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 7132‒7141.
[17] Everingham M, Van Gool L, Williams C K I, et al. The PASCAL visual object classes (VOC) challenge[J]. Int J Comput Vis, 2010, 88(2): 303‒338.
[18] Woo S, Park J, Lee J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018: 3‒19.
关键词:
基金项目:
国家自然科学基金资助项目(61873315)
导出参考文献,格式为:
引用本文:
陈海永, 赵鹏, 闫皓炜. 融合注意力的多尺度Faster RCNN的裂纹检测[J]. 光电工程, 2021, 48(1): 200112.
下一篇:基于彩色编码相移条纹的相机标定