针对背景感知相关滤波器的空间正则化权重固定,不适应目标变化和增大搜索区域,易引入背景噪声导致滤波器判别力下降等问题,本文提出一种基于自适应空间正则化和畸变抑制的相关滤波跟踪算法。首先提取FHOG特征、CN特征和灰度特征以增强算法模型对目标的表达能力;其次,在目标函数中加入畸变抑制项来约束当前帧的响应图,增强滤波器的判别能力,以缓解滤波器模型退化问题;最后,在目标函数中加入自适应空间正则化项使空间正则化权重能够随着目标的变化而更新,使得滤波器能充分利用目标的多样性信息。本文在公开数据集OTB-2013、OTB-2015和VOT2016上进行实验,以对所提算法进行评估。实验结果表明:本文算法速度为20 f/s,距离精度和成功率等评估指标均优于对比算法,在遮挡、背景干扰、旋转变化等多种复杂场景下都有良好的鲁棒性。
基于自适应空间正则化和畸变抑制的相关滤波跟踪
作者单位信息

出版日期:2021年1月15日
摘要
参考文献
[1] Yilmaz A, Javed O, Shah M. Object tracking: a survey[J]. ACM Comput Surv, 2006, 38(4): 1–45.
[2] Smeulders A W M, Chu D M, Cucchiara R, et al. Visual tracking: an experimental survey[J]. IEEE Trans Pattern Anal Mach Intell, 2014, 36(7): 1442–1468.
[3] Lu H C, Li P X, Wang D. Visual object tracking: a survey[J]. Pattern Recognit Artif Intell, 2018, 31(1): 61–76.
卢湖川, 李佩霞, 王栋. 目标跟踪算法综述[J]. 模式识别与人工智能, 2018, 31(1): 61–76.
[4] Bolme D S, Beveridge J R, Draper B A, et al. Visual object tracking using adaptive correlation filters[C]//Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2010: 2544–2550.
[5] Henriques J F, Caseiro R, Martins P, et al. Exploiting the circulant structure of tracking-by-detection with kernels[M]//Fitzgibbon A, Lazebnik S, Perona P, et al. Computer Vision–ECCV 2012. ECCV 2012. Berlin, Heidelberg: Springer, 2012: 702–715.
[6] Henriques J F, Caseiro R, Martins P, et al. High-speed tracking with kernelized correlation filters[J]. IEEE Trans Pattern Anal Mach Intell, 2015, 37(3): 583–596.
[7] Bertinetto L, Valmadre J, Golodetz S, et al. Staple: complementary learners for real-time tracking[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016: 1401–1409.
[8] Li Y, Zhu J K. A scale adaptive kernel correlation filter tracker with feature integration[C]//Agapito L, Bronstein M, Rother C. Computer Vision-ECCV 2014 Workshops. ECCV 2014. Zurich, Switzerland: Springer, 2014: 254–265.
[9] Danelljan M, Häger G, Khan F S, et al. Discriminative scale space tracking[J]. IEEE Trans Pattern Anal Mach Intell, 2017, 39(8): 1561–1575.
[10] Galoogahi H K, Fagg A, Lucey S. Learning background-aware correlation filters for visual tracking[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), 2017: 1135–1143.
[11] Huang Z Y, Fu C H, Li Y M, et al. Learning aberrance repressed correlation filters for real-time UAV tracking[C]//Proceedings of the 2019 IEEE International Conference on Computer Vision (ICCV), 2019: 2891–2900.
[12] Dai K A, Wang D, Lu H C, et al. Visual tracking via adaptive spatially-regularized correlation filters[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019: 4670–4679.
[13] Tang X M, Chen Z G, Fu Y. Anti-occlusion and re-tracking of real-time moving target based on kernelized correlation filter[J]. Opto-Electron Eng, 2020, 47(1): 52–61.
汤学猛, 陈志国, 傅毅. 基于核滤波器实时运动目标的抗遮挡再跟踪[J]. 光电工程, 2020, 47(1): 52–61.
[14] Wang H Y, Wang L, Yin W R, et al. Multi-scale correlation filtering visual tracking algorithm combined with target detection[J]. Acta Opt Sin, 2019, 39(1): 0115004.
王红雨, 汪梁, 尹午荣, 等. 结合目标检测的多尺度相关滤波视觉跟踪算法[J]. 光学学报, 2019, 39(1): 0115004.
[15] Liu W J, Sun H, Jiang W T. Correlation filter tracking algorithm for adaptive feature selection[J]. Acta Opt Sin, 2019, 39(6): 0615004.
刘万军, 孙虎, 姜文涛. 自适应特征选择的相关滤波跟踪算法[J]. 光学学报, 2019, 39(6): 0615004.
[16] Wu Y, Lim J, Yang M H. Object tracking benchmark[J]. IEEE Trans Pattern Anal Mach Intell, 2015, 37(9): 1834–1848.
[17] Wu Y, Lim J, Yang M H. Online object tracking: a benchmark[C]//Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition, 2013: 2411–2418.
[18] Kristan M, Matas J, Leonardis A, et al. The visual object tracking VOT2015 challenge results[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision Workshop (ICCVW), 2015: 1–23.
[19] Danelljan M, Bhat G, Khan F S, et al. ECO: efficient convolution operators for tracking[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017: 6638–6646.
[20] Li Y, Zhu J K, Hoi S C H, et al. Robust estimation of similarity transformation for visual object tracking[C]//Proceedings of 2019 AAAI Conference on Artificial Intelligence (AAAI), 2019, 33: 8666–8673.
[21] Danelljan M, Häger G, Khan F S, et al. Learning spatially regularized correlation filters for visual tracking[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), 2015: 4310–4318.
[22] Wang M M, Liu Y, Huang Z. Large margin object tracking with circulant feature maps[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017: 4800–4808.
[23] Danelljan M, Häger G, Khan F S, et al. Accurate scale estimation for robust visual tracking[C]//Proceedings of the British Machine Vision Conference 2014, 2014: 1–11.
[24] Nam H, Baek M, Han B. Modeling and propagating CNNs in a tree structure for visual tracking[EB/OL]. (2016-08-25)[2020-04-08]. https://arxiv.org/abs/1608.07242.
基金项目:
国家自然科学基金资助项目(61871278);四川省科技厅国际科技合作与交流研发项目(2018HH0143);成都市产业集群协同创新项目(2016-XT00-00015-GX)
导出参考文献,格式为:
引用本文:
王叶, 刘强, 卿粼波, 等. 基于自适应空间正则化和畸变抑制的相关滤波跟踪[J]. 光电工程, 2021, 48(1): 200068.
上一篇:基于深度学习的门机抓斗检测方法