跨摄像头场景中依赖面向标签映射关系的学习以提高识别精度,有监督行人重识别模型虽然识别精度较好,但存在可扩展问题,诸如算法识别精度严重依赖有效的监督信息,算法实时性差等;针对上述问题,提出一种基于软多标签的无监督行人重识别算法。为了提高标签匹配精度,首先利用软多标签逼近真实标签,通过计算参考数据集和参考代理在软多标签函数中的损失函数,预训练参考数据集,并构建预训练与训练结果的映射模型。再通过生成数据和真实数据分布的最小距离的期望即简化的2-Wasserstein距离计算相机视图中软多标签均值和标准差得到损失函数,解决跨视域标签一致性问题。为了提高软多标签对未标记目标数据集的有效性,计算联合嵌入损失,挖掘不同类别间的相似对,纠正跨域分布错位。针对残差网络训练时长和无监督学习精度低的问题,通过结合压缩激励网络(SENet)和多层级深度特征融合改进残差网络的结构,提高训练速度和精度。实验结果表明,该方法在标准数据集下的首位命中率和平均精度均值优于先进相关算法。
软多标签和深度特征融合的无监督行人重识别
作者单位信息

出版日期:2020年12月22日
摘要
参考文献
[1] Xiong F, Xiao Y, Cao Z G, et al. Good practices on building effective CNN baseline model for person re-identification[J]. Proceedings of SPIE, 2019, 11069: 110690I.
[2] Wang S Q, Xu X, Liu L, et al. Multi-level feature fusion model-based real-time person re-identification for forensics[J]. Journal of Real-Time Image Processing, 2020, 17(1): 73–81.
[3] Bak S, Carr P, Lalonde J F. Domain adaptation through synthesis for unsupervised person re-identification[J]. ECCV, 2018: 189–205.
[4] Ye M, Li J W, Ma A J, et al. Dynamic graph co-matching for unsupervised video-based person re-identification[J]. IEEE Transactions on Image Processing, 2019, 28(6): 2976–2990.
[5] Yu H X, Wu A C, Zheng W S. Cross-view asymmetric metric learning for unsupervised person re-identification[C]//Proceedings of 2017 IEEE International Conference on Computer Vision, Venice, 2017: 994–1002.
[6] Fan H H, Zheng L, Yan C G, et al. Unsupervised person re-identification: clustering and fine-tuning[J]. ACM Transactions on Multimedia Computing, Communications, and Applications, 2018, 14(4): 83.
[7] Wang J Y, Zhu X T, Gong S G, et al. Transferable joint attribute-identity deep learning for unsupervised person re-identification[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, 2018: 2275–2284.
[8] Wei L G, Zhang S l, Gao W, et al. Person transfer GAN to bridge domain gap for person re-identification[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, 2018: 79–88.
[9] Deng W J, Zheng L, Ye Q X, et al. Image-image domain adaptation with preserved self-similarity and domain-dissimilarity for person re-identification[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, 2018: 994–1003.
[10] Zhong Z, Zheng L, Li S Z, et al. Generalizing a person retrieval model hetero-and homogeneously[C]//Proceedings of the European Conference on Computer Vision, Glasgow, 2018: 172–188.
[11] Yu H X, Zheng W S, Wu A C, et al. Unsupervised person re-identification by soft multilabel learning[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, 2019: 2148–2157.
[12] He R, Wu X, Sun Z N, et al. Wasserstein CNN: learning invariant features for NIR-VIS face recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 41(7): 1761–1773.
[13] Wang F, Xiang X, Cheng J, et al. NormFace: L2 hypersphere embedding for face verification[C]//Proceedings of the 25th ACM International Conference on Multimedia, California, Mountain View, 2017: 1041–1049.
[14] Hu J, Shen L, Sun G. Squeeze-and-excitation networks[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, 2018: 7132–7141.
[15] Wang C, Zhang Q, Huang C, et al. Mancs: a multi-task attentional network with curriculum sampling for person re-identification[C]//Proceedings of the 15th European Conference on Computer Vision, Munich, 2018: 365–381.
[16] Fan H, Zheng L, Yan C, et al. Unsupervised Person Re-identification by Deep Learning Tracklet Association[J]. Acm Transactions on Multimedia Computing Communications & Applications, 2018, 14(4): 1–18.
[17] He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, 2016: 770–778.
[18] Wang Y, Wang L Q, You Y R, et al. Resource aware person re-identification across multiple resolutions[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, 2018: 8042–8051.
[19] Hu Y, Wen G H, Luo M N, et al. Competitive inner-imaging squeeze and excitation for residual network[Z]. arXiv: 1807.08920[cs: CV], 2018.
[20] Zheng L, Shen L Y, Tian L, et al. Scalable person re-identification: a benchmark[C]//Proceedings of 2015 IEEE International Conference on Computer Vision, Santiago, 2015: 1116–1124.
[21] Zheng Z D, Zheng L, Yang Y. Unlabeled samples generated by GAN improve the person re-identification baseline in vitro[C]//Proceedings of 2017 IEEE International Conference on Computer Vision, Venice, 2017: 3754–3762.
[22] Lin S, Li H L, Li C T, et al. Multi-task mid-level feature alignment network for unsupervised cross-dataset person re-identification[Z]. arXiv: 1807.01440[cs: CV], 2018.
[23] Yu H X, Wu A C, Zheng W S. Unsupervised person re-identification by deep asymmetric metric embedding[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 42(4): 956–973.
[24] Li Y J, Yang F E, Liu Y C, et al. Adaptation and re-identification network: an unsupervised deep transfer learning approach to person re-identification[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Salt Lake City, 2018: 172–178.
[25] Lin Y T, Dong X Y, Zheng L, et al. A bottom-up clustering approach to unsupervised person re-identification[C]// Proceedings of the 33rd AAAI Conference on Artificial Intelligence, 2019: 8738–8745.
基金项目:
国家自然科学基金资助项目(61962046,61663036,61841204);内蒙古杰青培育项目(2018JQ02);内蒙古草原英才,内蒙古青年科技创新人才项目(第一层次);内蒙古自治区自然科学基金资助项目(2015MS0604,2018MS06018);内蒙古自治区高等学校科学技术研究项目资助(NJZY145)
导出参考文献,格式为:
引用本文:
张宝华, 朱思雨, 吕晓琪, 等. 软多标签和深度特征融合的无监督行人重识别[J]. 光电工程, 2020, 47(12): 190636.