车载激光雷达点云数据地面滤波算法综述

黄思源,刘利民,董健,等. 车载激光雷达点云数据地面滤波算法综述[J]. 光电工程,2020,47(12):190688. doi: 10.12086/oee.2020.190688
引用本文: 黄思源,刘利民,董健,等. 车载激光雷达点云数据地面滤波算法综述[J]. 光电工程,2020,47(12):190688. doi: 10.12086/oee.2020.190688
Huang S Y, Liu L M, Dong J, et al. Review of ground filtering algorithms for vehicle LiDAR scans point cloud data[J]. Opto-Electron Eng, 2020, 47(12): 190688. doi: 10.12086/oee.2020.190688
Citation: Huang S Y, Liu L M, Dong J, et al. Review of ground filtering algorithms for vehicle LiDAR scans point cloud data[J]. Opto-Electron Eng, 2020, 47(12): 190688. doi: 10.12086/oee.2020.190688

车载激光雷达点云数据地面滤波算法综述

  • 基金项目:
    装备发展部十三五预研基金(41415010503)
详细信息
    作者简介:
    通讯作者: 刘利民(1971-),男,教授,博士生导师,主要从事目标探测与电子对抗的研究。E-mail:lidarsci@sina.com
  • 中图分类号: TN249

Review of ground filtering algorithms for vehicle LiDAR scans point cloud data

  • Fund Project: Supported by The 13th Five Year Plan Pre-Research Fund of Equipment Development Department (41415010503)
More Information
  • 激光雷达在无人驾驶领域占据了重要地位,地面滤波是从激光雷达获取的点云数据中分离和提取地面信息的关键技术。文章首先简述了车载激光雷达(VLS)的发展及分类,并讨论了各类车载激光雷达的优缺点;然后研究了VLS地面滤波算法的发展并进行梳理分类,阐述了地面滤波精度的评估方法和评估标准,并以三种典型的算法为例进行比较分析;最后总结了当前VLS硬件和地面滤波算法的不足,并展望未来发展趋势。

  • Overview: LiDAR plays an important role in the field of unmanned driving. Ground filtering is the key technology to separate and extract the ground information according to the point cloud data acquired by LiDAR. First of all, this paper briefly describes the landmark events that vehicle LiDAR scans (VLS) established its position in the field of unmanned driving. According to the classification of mechanical, mixed solid and solid LiDAR, the working principle of each type of VLS is described, and the advantages and disadvantages of each type of VLS are discussed and compared. Secondly, the development of VLS ground filtering algorithms is studied. And the existing algorithms are sorted according to the processing methods of point cloud data. The ground filtering algorithm is divided into four categories: the ground filtering algorithm based on space division, the ground filtering algorithm based on scan lines, the ground filtering algorithm based on local characteristics, and the ground filtering algorithm based on additional information. According to the principles and filtering results of different algorithms, their characteristics, advantages and disadvantages are described. In addition to the above filtering algorithms, some ground filtering algorithms are also introduced. However, the adaptability of these algorithms to VLS point cloud data needs to be further improved. The common evaluation methods and standards of ground filtering accuracy are described to effectively evaluate the filtering results of various algorithms in different situations. There are three evaluation methods of filtering results: the manual calibration method, the visual inspection method, and the random sampling method. Furthermore, there are three evaluation standards for filtering accuracy: the cross table method, the Kappa coefficient method, and the algorithm time/space complexity. In order to show the characteristics of various algorithms, typical algorithms are selected for comparison from the ground filtering algorithm based on spatial division, the ground filtering algorithm based on scan lines and the ground filtering algorithm based on local characteristics. By changing the selected value of parameters, several groups of tests are carried out for each algorithm. The filtering results are arranged in ascending order according to Kappa coefficient, and the influence of parameter changes on the results is analyzed. The accuracy evaluation criteria are used to compare and analyze the optimal filtering results. Finally, the shortcomings of existing VLS ground filtering algorithms are summarized, and the development trend of VLS and VLS ground filtering algorithms is prospected. With the development of the computer technology and machine learning technology, filtering algorithms will be more intelligent and efficient.

  • 加载中
  • 图 1  点云空间划分算法。(a)局部点云;(b)网格划分;(c)体素划分

    Figure 1.  Space division methods of point cloud. (a) Local point cloud; (b) Gridding; (c) Voxel partition

    图 2  扫描线变化示意图。(a) VLS扫描场景仿真;(b)扫描线水平投影

    Figure 2.  Change of scanning lines. (a) Scanning scene simulation of VLS; (b) Horizontal projection of scanning lines

    图 3  点云数据获取场景

    Figure 3.  The scene of point cloud data

    图 4  标定结果

    Figure 4.  Calibration results

    图 5  三种典型地面滤波算法结果。(a)向上生长滤波算法结果;(b)相邻点连线滤波算法结果;(c)坡度值区域增长滤波算法结果;(d)向上生长滤波算法结果点云图;(e)相邻点连线滤波算法结果点云图;(f)坡度值区域增长滤波算法结果点云图

    Figure 5.  Filtering results of three typical ground filtering algorithms. (a) Results of growing up algorithm; (b) Results of adjacent points; (c) Results of slope-regional growth; (d) Point cloud of growing up algorithm; (e) Point cloud of adjacent points; (f) Point cloud of slope-regional growth

    表 1  车载激光雷达对比表

    Table 1.  Comparisons of mobile LiDAR

    车载激光雷达类型 工作原理 优点 缺点 厂商/研究机构代表
    机械式旋转
    激光雷达
    通过部件的机械旋转完成激光扫描 大扫描视场和高扫描效率,可承受的激光功率高 机械结构复杂,设备难以小型化,行车环境下磨损严重,使用寿命短,价格高昂 Velodyne公司(美国)
    Quanergy公司(德国)
    上海禾赛光电
    深圳速腾聚创
    混合固态
    激光雷达
    通过MEMS振镜旋转完成激光扫描 实现了一定程度的小型化,响应速度较快 接收光路复杂,使用寿命短,扫描受限于振镜的偏转范围 Msotek公司(韩国)
    Innoviz公司(以色列)
    光学相控阵型
    激光雷达
    通过控制合成光束的指向完成激光扫描 无惯性器件,精确稳定,方向可任意控制 需要消除旁瓣的影响,难以实现水平360°扫描 Quanergy公司(美国)
    Blackmore公司(美国)
    闪光型
    激光雷达
    采用单脉冲直接向各个方向漫射,利用飞行时间成像 只要一次快闪便能照亮整个场景,避免运动畸变 探测精度随距离增加明显降低,视场角受限 亚德诺半导体公司
    (美国)
    下载: 导出CSV

    表 2  交叉表

    Table 2.  Crosstab

    滤波结果
    地面点 非地面点 总和
    标定数据 地面点 a b e=a+b
    非地面点 c d f=c+d
    总和 g=a+c h=b+d n=e+f
    下载: 导出CSV

    表 3  滤波算法对比

    Table 3.  Comparisona of filtering algorithms

    算法名称 算法类型 算法时间复杂度T(n) 算法空间复杂度S(n) 参数/单位 参数取值范围/步进值 最优结果
    最优结果对应参数 Ⅰ类误差 Ⅱ类误差 总误差 Kappa系数
    向上生长滤波算法 基于空间划分 O(n/m) O(9(m-1)) 网格长度/m 0.1~0.5/0.1 0.2 0.0153 0.3854 0.1420 0.6553
    网格高度/m 0.1~0.5/0.1 0.2
    高度阈值/m -1.4~-0.4/0.1 -0.9
    相邻点连线滤波算法 基于扫描线 O(n) O(n) 坡度系数 0.003~0.0074 /0.0002 0.0032 0.0900 0.2113 0.1297 0.7035
    高度阈值/m -1.4~-0.4/0.1 -1.1
    坡度值区域增长滤波算法 基于局部特征 O(n) O(n) 坡度阈值/(°) 5~45/1.0 41 0.0675 0.1107 0.0824 0.7821
    高度阈值/m -1.4~-0.4/0.1 -1.1
    下载: 导出CSV
  • [1]

    刘博, 于洋, 姜朔.激光雷达探测及三维成像研究进展[J].光电工程, 2019, 46(7): 190167. doi: 10.12086/oee.2019.190167

    Liu B, Yu Y, Jiang S. Review of advances in LiDAR detection and 3D imaging[J]. Opto-Electronic Engineering, 2019, 46(7): 190167. doi: 10.12086/oee.2019.190167

    [2]

    Habermann D, Hata A, Wolf D, et al. 3D point clouds segmentation for autonomous ground vehicle[C]//2013 Ⅲ Brazilian Symposium on Computing Systems Engineering, Niteroi, Brazil, 2013: 143-148.

    [3]

    刘志青, 黄沈华, 马琪, 等.基于混合最小二乘与总体最小二乘的激光雷达滤波算法[J].测绘与空间地理信息, 2019, 42(2): 30-33. https://www.cnki.com.cn/Article/CJFDTOTAL-DBCH201902009.htm

    Liu Z Q, Huang S H, Ma Q, et al. LiDAR filtering algorithm based on mixed least squares and total least squares[J]. Geomatics & Spatial Information Technology, 2019, 42(2): 30-33. https://www.cnki.com.cn/Article/CJFDTOTAL-DBCH201902009.htm

    [4]

    邱纯鑫.激光雷达与自动驾驶的产业化之路[J].人工智能, 2018(6): 37-47. https://www.cnki.com.cn/Article/CJFDTOTAL-DKJS201806006.htm

    Qiu C X. Lidar and the industrialization of automatic driving[J]. Artificial Intelligence, 2018(6): 37-47. https://www.cnki.com.cn/Article/CJFDTOTAL-DKJS201806006.htm

    [5]

    陈晓冬, 张佳琛, 庞伟凇, 等.智能驾驶车载激光雷达关键技术与应用算法[J].光电工程, 2019, 46(7): 190182. doi: 10.12086/oee.2019.190182

    Chen X D, Zhang J C, Pang W S, et al. Key technology and application algorithm of intelligent driving vehicle LiDAR[J]. Opto-Electronic Engineering, 2019, 46(7): 190182. doi: 10.12086/oee.2019.190182

    [6]

    陈敬业, 时尧成.固态激光雷达研究进展[J].光电工程, 2019, 46(7): 190218. doi: 10.12086/oee.2019.190218

    Chen J Y, Shi Y C. Research progress in solid-state LiDAR[J]. Opto-Electronic Engineering, 2019, 46(7): 190218. doi: 10.12086/oee.2019.190218

    [7]

    Douillard B, Underwood J, Vlaskine V, et al. A pipeline for the segmentation and classification of 3D point clouds[C]//The 12th International Symposium on Experimental Robotics (ISER), Berlin, Heidelberg, 2014: 585-600.

    [8]

    Zhu Z, Liu J L. Graph-based ground segmentation of 3D LIDAR in rough area[C]//2014 IEEE International Conference on Technologies for Practical Robot Applications, Woburn, MA, USA, 2014.

    [9]

    Thrun S, Montemerlo M, Dahlkamp H, et al. Stanley: the robot that won the DARPA grand challenge[J]. Journal of Field Robotics, 2006, 23(9): 661-692. doi: 10.1002/rob.20147

    [10]

    Douillard B, Underwood J, Melkumyan N, et al. Hybrid elevation maps: 3D surface models for segmentation[C]//2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan, China, 2010: 1532-1538.

    [11]

    Kammel S, Pitzer B. Lidar-based lane marker detection and mapping[C]//2008 IEEE Intelligent Vehicles Symposium, Eindhoven, Netherlands, 2008: 1137-1142.

    [12]

    Guo C Z, Sato W, Han L, et al. Graph-based 2D road representation of 3D point clouds for intelligent vehicles[C]//2011 IEEE Intelligent Vehicles Symposium (IV), Baden-Baden, Germany, 2011: 715-721.

    [13]

    Douillard B, Underwood J, Kuntz N, et al. On the segmentation of 3D LIDAR point clouds[C]//2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 2011: 2798-2805.

    [14]

    Zhao G Q, Yuan J S. Curb detection and tracking using 3D-LIDAR scanner[C]//2012 19th IEEE International Conference on Image Processing, Orlando, FL, USA, 2012: 437-440.

    [15]

    Chen T T, Dai B, Liu D X, et al. 3D LIDAR-based ground segmentation[C]//The First Asian Conference on Pattern Recognition, Beijing, China, 2011: 446-450.

    [16]

    Guan H Y, Yu Y T, Ji Z, et al. Deep learning-based tree classification using mobile LiDAR data[J]. Remote Sensing Letters, 2015, 6(11): 864-873. doi: 10.1080/2150704X.2015.1088668

    [17]

    Guan H Y, Yu Y T, Li J, et al. Pole-like road object detection in mobile LiDAR data via supervoxel and bag-of-contextual-visual-words representation[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(4): 520-524. doi: 10.1109/LGRS.2016.2521684

    [18]

    Husain A, Vaishya R C. A time efficient algorithm for ground point filtering from mobile LiDAR data[C]//2016 International Conference on Control, Computing, Communication and Materials (ICCCCM), Allahbad, India, 2016.

    [19]

    Montemerlo M, Becker J, Bhat S, et al. Junior: the stanford entry in the urban challenge[J]. Journal of Field Robotics, 2008, 25(9): 569-597. doi: 10.1002/rob.20258

    [20]

    Himmelsbach M, Hundelshausen F V, Wuensche H J. Fast segmentation of 3D point clouds for ground vehicles[C]//2010 IEEE Intelligent Vehicles Symposium, San Diego, CA, USA, 2010: 560-565.

    [21]

    Yang B S, Fang L N, Li J. Semi-automated extraction and delineation of 3D roads of street scene from mobile laser scanning point clouds[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 79: 80-93. doi: 10.1016/j.isprsjprs.2013.01.016

    [22]

    Hu X Y, Li X K, Zhang Y J. Fast filtering of LiDAR point cloud in urban areas based on scan line segmentation and GPU acceleration[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(2): 308-312. doi: 10.1109/LGRS.2012.2205130

    [23]

    Hata A Y, Wolf D F. Feature detection for vehicle localization in urban environments using a multilayer LIDAR[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(2): 420-429. http://ieeexplore.ieee.org/document/7279128/

    [24]

    Zhou Y, Wang D, Xie X, et al. A fast and accurate segmentation method for ordered LiDAR point cloud of large-scale scenes[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(11): 1981-1985. doi: 10.1109/LGRS.2014.2316009

    [25]

    Yin H L, Yang X H, He C. Spherical coordinates based methods of ground extraction and objects segmentation using 3-D LiDAR sensor[J]. IEEE Intelligent Transportation Systems Magazine, 2016, 8(1): 61-68. http://ieeexplore.ieee.org/document/7384616/

    [26]

    Hernandez J, Marcotegui B. Filtering of artifacts and pavement segmentation from mobile LiDAR data[C]//ISPRS Workshop Laserscanning 2009, Paris, France, 2009.

    [27]

    Wojke N, Häselich M. Moving vehicle detection and tracking in unstructured environments[C]//2012 IEEE International Conference on Robotics and Automation (ICRA), Saint Paul, MN, USA, 2012: 3082-3087.

    [28]

    樊建崟.在城市道路场景下基于稀疏三维点云的目标识别[D].哈尔滨: 哈尔滨工业大学, 2018: 12-13.

    Fan J Y. Object recognition based on sparse 3D point cloud in urban environment[D]. Harbin: Harbin Institute of Technology, 2018: 12-13.

    [29]

    Yuan X, Zhao C X, Cai Y F, et al. Road-surface abstraction using ladar sensing[C]//2008 10th International Conference on Control, Automation, Robotics and Vision, Hanoi, Vietnam, 2008: 1097-1102.

    [30]

    Moosmann F, Pink O, Stiller C. Segmentation of 3D lidar data in non-flat urban environments using a local convexity criterion[C]//Proceedings of 2009 IEEE Intelligent Vehicles Symposium, Xi'an, China, 2009: 215-220.

    [31]

    张名芳, 付锐, 郭应时, 等.基于三维不规则点云的地面分割算法[J].吉林大学学报(工学版), 2017, 47(5): 1387-1394. https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201705009.htm

    Zhang M F, Fu R, Guo Y S, et al. Road segmentation method based on irregular three dimensional point cloud[J]. Journal of Jilin University (Engineering and Technology Edition), 2017, 47(5): 1387-1394. https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201705009.htm

    [32]

    McElhinney C, Kumar P, Cahalane C, et al. Initial results from European road safety inspection (EURSI) mobile mapping project[C]//The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Newcastle upon Tyne, UK, 2010: 440-445.

    [33]

    Asvadi A, Premebida C, Peixoto P, et al. 3D lidar-based static and moving obstacle detection in driving environments: an approach based on voxels and multi-region ground planes[J]. Robotics and Autonomous Systems, 2016, 83: 299-311. doi: 10.1016/j.robot.2016.06.007

    [34]

    Chen T T, Dai B, Liu D X, et al. Sparse Gaussian process regression based ground segmentation for autonomous land vehicles[C]//The 27th Chinese Control and Decision Conference, Qingdao, China, 2015: 3993-3998.

    [35]

    董敏, 陈铁桩, 杨浩.基于Mesh的地面激光点云分离方法研究[J].计算机工程, 2019, 45(6): 32-36, 44. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJC201906006.htm

    Dong M, Chen T Z, Yang H. Research on separation method of ground laser point cloud based on mesh[J]. Computer Engineering, 2019, 45(6): 32-36, 44. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJC201906006.htm

    [36]

    Rusu R B. Semantic 3D object maps for everyday manipulation in human living environments[J]. KI-Künstliche Intelligenz, 2010, 24(4): 345-348. doi: 10.1007/s13218-010-0059-6

    [37]

    苏本跃, 马金宇, 彭玉升, 等.基于K-means聚类的RGBD点云去噪和精简算法[J].系统仿真学报, 2016, 28(10): 2329-2334, 2341. https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ201610006.htm

    Su B Y, Ma J Y, Peng Y S, et al. Algorithm for RGBD point cloud denoising and simplification based on K-means clustering[J]. Journal of System Simulation, 2016, 28(10): 2329-2334, 2341. https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ201610006.htm

    [38]

    Biosca J M, Lerma J L. Unsupervised robust planar segmentation of terrestrial laser scanner point clouds based on fuzzy clustering methods[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2008, 63(1): 84-98. http://www.sciencedirect.com/science/article/pii/s0924271607000809

    [39]

    Zhou W Q. An object-based approach for urban land cover classification: integrating LiDAR height and intensity data[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(4): 928-931. http://ieeexplore.ieee.org/document/6497495/

    [40]

    Tatoglu A, Pochiraju K. Point cloud segmentation with LiDAR reflection intensity behavior[C]//IEEE International Conference on Robotics and Automation, Saint Paul, MN, USA, 2012: 786-790.

    [41]

    Franceschi M, Teza G, Preto N, et al. Discrimination between marls and limestones using intensity data from terrestrial laser scanner[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2009, 64(6): 522-528. http://www.sciencedirect.com/science/article/pii/S0924271609000446

    [42]

    Pirotti F, Guarnieri A, Vettore A. Ground filtering and vegetation mapping using multi-return terrestrial laser scanning[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 76: 56-63. http://www.sciencedirect.com/science/article/pii/S0924271612001505

    [43]

    Boyko A, Funkhouser T. Extracting roads from dense point clouds in large scale urban environment[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2011, 66(6): S2-S12. http://www.sciencedirect.com/science/article/pii/S0924271611001067

    [44]

    Song H, Choi W, Kim H. Robust vision-based relative-localization approach using an RGB-depth camera and LiDAR sensor fusion[J]. IEEE Transactions on Industrial Electronics, 2016, 63(6): 3725-3736. http://ieeexplore.ieee.org/document/7390258

    [45]

    Lichti D D. Spectral filtering and classification of terrestrial laser scanner point clouds[J]. The Photogrammetric Record, 2005, 20(111): 218-240. http://onlinelibrary.wiley.com/doi/10.1111/j.1477-9730.2005.00321.x

    [46]

    Thrun S. Learning occupancy grid maps with forward sensor models[J]. Autonomous Robots, 2003, 15(2): 111-127. http://dl.acm.org/citation.cfm?id=940152.940193

    [47]

    Kammel S, Ziegler J, Pitzer B, et al. Team AnnieWAY's autonomous system for the 2007 DARPA urban challenge[J]. Journal of Field Robotics, 2008, 25(9): 615-639. http://dl.acm.org/citation.cfm?id=1405648

    [48]

    Hoover A, Jean-Baptiste G, Jiang X, et al. An experimental comparison of range image segmentation algorithms[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996, 18(7): 673-689.

    [49]

    Kilian J, Haala N, Englich M. Capture and evaluation of airborne laser scanner data[C]//International Archives of Photogrammetry and Remote Sensing, Vienna, 1996, 31: 383-388.

    [50]

    Zhang K Q, Chen S C, Whitman D, et al. A progressive morphological filter for removing nonground measurements from airborne LIDAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(4): 872-882. http://ieeexplore.ieee.org/document/1202973

    [51]

    黄作维, 刘峰, 胡光伟.基于多尺度虚拟格网的LiDAR点云数据滤波改进方法[J].光学学报, 2017, 37(8): 0828004. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201708042.htm

    Huang Z W, Liu F, Hu G W. Improved method for LiDAR point cloud data filtering based on hierarchical pseudo-grid[J]. Acta Optica Sinica, 2017, 37(8): 0828004. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201708042.htm

    [52]

    Cohen J. A coefficient of agreement for nominal scales[J]. Educational and Psychological Measurement, 1960, 20(1): 37-46. http://epm.sagepub.com/content/74/1/116/F1.expansion.html

    [53]

    周纪芗, 茆诗松.质量管理统计方法[M]. 2版.北京:中国统计出版社, 2008: 433-440.

    Zhou J X, Mao S S. Statistical Methodsfor Quality Management[M]. 2nd ed. Beijing: China Statistics Press, 2008: 433-440.

    [54]

    Geiger A, Lenz P, Stiller C, et al. Vision meets robotics: the KITTI dataset[J]. The International Journal of Robotics Research, 2013, 32(11): 1231-1237. http://imaiai.oxfordjournals.org/external-ref?access_num=10.1177/0278364913491297&link_type=DOI

    [55]

    Liu S D, Hu L, Shi T X, et al. Comparison of filtering algorithms for rock point cloud data[C]//Proceedings of the 2016 5th International Conference on Advanced Materials and Computer Science, 2016: 101-107.

    [56]

    Li J, Mei X, Prokhorov D, et al. Deep neural network for structural prediction and lane detection in traffic scene[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(3): 690-703. http://europepmc.org/abstract/med/26890928

  • 加载中

(5)

(3)

计量
  • 文章访问数:  9127
  • PDF下载数:  2347
  • 施引文献:  0
出版历程
收稿日期:  2019-11-13
修回日期:  2020-01-14
刊出日期:  2020-12-15

目录

/

返回文章
返回