Huang S Y, Liu L M, Dong J, et al. Review of ground filtering algorithms for vehicle LiDAR scans point cloud data[J]. Opto-Electron Eng, 2020, 47(12): 190688. doi: 10.12086/oee.2020.190688
Citation: Huang S Y, Liu L M, Dong J, et al. Review of ground filtering algorithms for vehicle LiDAR scans point cloud data[J]. Opto-Electron Eng, 2020, 47(12): 190688. doi: 10.12086/oee.2020.190688

Review of ground filtering algorithms for vehicle LiDAR scans point cloud data

    Fund Project: Supported by The 13th Five Year Plan Pre-Research Fund of Equipment Development Department (41415010503)
More Information
  • LiDAR plays an important role in the field of unmanned driving. Ground filtering is the key technology to separate and extract the ground information from the point cloud data acquired by LiDAR. Firstly, the development and classification of vehicle LiDAR scans (VLS) are introduced, and the advantages and disadvantages of all kinds of VLS are discussed. Then, the development of VLS ground filtering algorithm is studied and classified. The evaluation methods and standards of ground filtering accuracy are described, and three typical algorithms are compared and analyzed. Finally, the shortcomings of current VLS and its ground filtering algorithms are summarized, and the future development trend is prospected.
  • 加载中
  • [1] 刘博, 于洋, 姜朔.激光雷达探测及三维成像研究进展[J].光电工程, 2019, 46(7): 190167. doi: 10.12086/oee.2019.190167

    CrossRef Google Scholar

    Liu B, Yu Y, Jiang S. Review of advances in LiDAR detection and 3D imaging[J]. Opto-Electronic Engineering, 2019, 46(7): 190167. doi: 10.12086/oee.2019.190167

    CrossRef Google Scholar

    [2] Habermann D, Hata A, Wolf D, et al. 3D point clouds segmentation for autonomous ground vehicle[C]//2013 Ⅲ Brazilian Symposium on Computing Systems Engineering, Niteroi, Brazil, 2013: 143-148.

    Google Scholar

    [3] 刘志青, 黄沈华, 马琪, 等.基于混合最小二乘与总体最小二乘的激光雷达滤波算法[J].测绘与空间地理信息, 2019, 42(2): 30-33.

    Google Scholar

    Liu Z Q, Huang S H, Ma Q, et al. LiDAR filtering algorithm based on mixed least squares and total least squares[J]. Geomatics & Spatial Information Technology, 2019, 42(2): 30-33.

    Google Scholar

    [4] 邱纯鑫.激光雷达与自动驾驶的产业化之路[J].人工智能, 2018(6): 37-47.

    Google Scholar

    Qiu C X. Lidar and the industrialization of automatic driving[J]. Artificial Intelligence, 2018(6): 37-47.

    Google Scholar

    [5] 陈晓冬, 张佳琛, 庞伟凇, 等.智能驾驶车载激光雷达关键技术与应用算法[J].光电工程, 2019, 46(7): 190182. doi: 10.12086/oee.2019.190182

    CrossRef Google Scholar

    Chen X D, Zhang J C, Pang W S, et al. Key technology and application algorithm of intelligent driving vehicle LiDAR[J]. Opto-Electronic Engineering, 2019, 46(7): 190182. doi: 10.12086/oee.2019.190182

    CrossRef Google Scholar

    [6] 陈敬业, 时尧成.固态激光雷达研究进展[J].光电工程, 2019, 46(7): 190218. doi: 10.12086/oee.2019.190218

    CrossRef Google Scholar

    Chen J Y, Shi Y C. Research progress in solid-state LiDAR[J]. Opto-Electronic Engineering, 2019, 46(7): 190218. doi: 10.12086/oee.2019.190218

    CrossRef Google Scholar

    [7] Douillard B, Underwood J, Vlaskine V, et al. A pipeline for the segmentation and classification of 3D point clouds[C]//The 12th International Symposium on Experimental Robotics (ISER), Berlin, Heidelberg, 2014: 585-600.

    Google Scholar

    [8] Zhu Z, Liu J L. Graph-based ground segmentation of 3D LIDAR in rough area[C]//2014 IEEE International Conference on Technologies for Practical Robot Applications, Woburn, MA, USA, 2014.

    Google Scholar

    [9] Thrun S, Montemerlo M, Dahlkamp H, et al. Stanley: the robot that won the DARPA grand challenge[J]. Journal of Field Robotics, 2006, 23(9): 661-692. doi: 10.1002/rob.20147

    CrossRef Google Scholar

    [10] Douillard B, Underwood J, Melkumyan N, et al. Hybrid elevation maps: 3D surface models for segmentation[C]//2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan, China, 2010: 1532-1538.

    Google Scholar

    [11] Kammel S, Pitzer B. Lidar-based lane marker detection and mapping[C]//2008 IEEE Intelligent Vehicles Symposium, Eindhoven, Netherlands, 2008: 1137-1142.

    Google Scholar

    [12] Guo C Z, Sato W, Han L, et al. Graph-based 2D road representation of 3D point clouds for intelligent vehicles[C]//2011 IEEE Intelligent Vehicles Symposium (IV), Baden-Baden, Germany, 2011: 715-721.

    Google Scholar

    [13] Douillard B, Underwood J, Kuntz N, et al. On the segmentation of 3D LIDAR point clouds[C]//2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 2011: 2798-2805.

    Google Scholar

    [14] Zhao G Q, Yuan J S. Curb detection and tracking using 3D-LIDAR scanner[C]//2012 19th IEEE International Conference on Image Processing, Orlando, FL, USA, 2012: 437-440.

    Google Scholar

    [15] Chen T T, Dai B, Liu D X, et al. 3D LIDAR-based ground segmentation[C]//The First Asian Conference on Pattern Recognition, Beijing, China, 2011: 446-450.

    Google Scholar

    [16] Guan H Y, Yu Y T, Ji Z, et al. Deep learning-based tree classification using mobile LiDAR data[J]. Remote Sensing Letters, 2015, 6(11): 864-873. doi: 10.1080/2150704X.2015.1088668

    CrossRef Google Scholar

    [17] Guan H Y, Yu Y T, Li J, et al. Pole-like road object detection in mobile LiDAR data via supervoxel and bag-of-contextual-visual-words representation[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(4): 520-524. doi: 10.1109/LGRS.2016.2521684

    CrossRef Google Scholar

    [18] Husain A, Vaishya R C. A time efficient algorithm for ground point filtering from mobile LiDAR data[C]//2016 International Conference on Control, Computing, Communication and Materials (ICCCCM), Allahbad, India, 2016.

    Google Scholar

    [19] Montemerlo M, Becker J, Bhat S, et al. Junior: the stanford entry in the urban challenge[J]. Journal of Field Robotics, 2008, 25(9): 569-597. doi: 10.1002/rob.20258

    CrossRef Google Scholar

    [20] Himmelsbach M, Hundelshausen F V, Wuensche H J. Fast segmentation of 3D point clouds for ground vehicles[C]//2010 IEEE Intelligent Vehicles Symposium, San Diego, CA, USA, 2010: 560-565.

    Google Scholar

    [21] Yang B S, Fang L N, Li J. Semi-automated extraction and delineation of 3D roads of street scene from mobile laser scanning point clouds[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 79: 80-93. doi: 10.1016/j.isprsjprs.2013.01.016

    CrossRef Google Scholar

    [22] Hu X Y, Li X K, Zhang Y J. Fast filtering of LiDAR point cloud in urban areas based on scan line segmentation and GPU acceleration[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(2): 308-312. doi: 10.1109/LGRS.2012.2205130

    CrossRef Google Scholar

    [23] Hata A Y, Wolf D F. Feature detection for vehicle localization in urban environments using a multilayer LIDAR[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(2): 420-429.

    Google Scholar

    [24] Zhou Y, Wang D, Xie X, et al. A fast and accurate segmentation method for ordered LiDAR point cloud of large-scale scenes[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(11): 1981-1985. doi: 10.1109/LGRS.2014.2316009

    CrossRef Google Scholar

    [25] Yin H L, Yang X H, He C. Spherical coordinates based methods of ground extraction and objects segmentation using 3-D LiDAR sensor[J]. IEEE Intelligent Transportation Systems Magazine, 2016, 8(1): 61-68.

    Google Scholar

    [26] Hernandez J, Marcotegui B. Filtering of artifacts and pavement segmentation from mobile LiDAR data[C]//ISPRS Workshop Laserscanning 2009, Paris, France, 2009.

    Google Scholar

    [27] Wojke N, Häselich M. Moving vehicle detection and tracking in unstructured environments[C]//2012 IEEE International Conference on Robotics and Automation (ICRA), Saint Paul, MN, USA, 2012: 3082-3087.

    Google Scholar

    [28] 樊建崟.在城市道路场景下基于稀疏三维点云的目标识别[D].哈尔滨: 哈尔滨工业大学, 2018: 12-13.

    Google Scholar

    Fan J Y. Object recognition based on sparse 3D point cloud in urban environment[D]. Harbin: Harbin Institute of Technology, 2018: 12-13.

    Google Scholar

    [29] Yuan X, Zhao C X, Cai Y F, et al. Road-surface abstraction using ladar sensing[C]//2008 10th International Conference on Control, Automation, Robotics and Vision, Hanoi, Vietnam, 2008: 1097-1102.

    Google Scholar

    [30] Moosmann F, Pink O, Stiller C. Segmentation of 3D lidar data in non-flat urban environments using a local convexity criterion[C]//Proceedings of 2009 IEEE Intelligent Vehicles Symposium, Xi'an, China, 2009: 215-220.

    Google Scholar

    [31] 张名芳, 付锐, 郭应时, 等.基于三维不规则点云的地面分割算法[J].吉林大学学报(工学版), 2017, 47(5): 1387-1394.

    Google Scholar

    Zhang M F, Fu R, Guo Y S, et al. Road segmentation method based on irregular three dimensional point cloud[J]. Journal of Jilin University (Engineering and Technology Edition), 2017, 47(5): 1387-1394.

    Google Scholar

    [32] McElhinney C, Kumar P, Cahalane C, et al. Initial results from European road safety inspection (EURSI) mobile mapping project[C]//The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Newcastle upon Tyne, UK, 2010: 440-445.

    Google Scholar

    [33] Asvadi A, Premebida C, Peixoto P, et al. 3D lidar-based static and moving obstacle detection in driving environments: an approach based on voxels and multi-region ground planes[J]. Robotics and Autonomous Systems, 2016, 83: 299-311. doi: 10.1016/j.robot.2016.06.007

    CrossRef Google Scholar

    [34] Chen T T, Dai B, Liu D X, et al. Sparse Gaussian process regression based ground segmentation for autonomous land vehicles[C]//The 27th Chinese Control and Decision Conference, Qingdao, China, 2015: 3993-3998.

    Google Scholar

    [35] 董敏, 陈铁桩, 杨浩.基于Mesh的地面激光点云分离方法研究[J].计算机工程, 2019, 45(6): 32-36, 44.

    Google Scholar

    Dong M, Chen T Z, Yang H. Research on separation method of ground laser point cloud based on mesh[J]. Computer Engineering, 2019, 45(6): 32-36, 44.

    Google Scholar

    [36] Rusu R B. Semantic 3D object maps for everyday manipulation in human living environments[J]. KI-Künstliche Intelligenz, 2010, 24(4): 345-348. doi: 10.1007/s13218-010-0059-6

    CrossRef Google Scholar

    [37] 苏本跃, 马金宇, 彭玉升, 等.基于K-means聚类的RGBD点云去噪和精简算法[J].系统仿真学报, 2016, 28(10): 2329-2334, 2341.

    Google Scholar

    Su B Y, Ma J Y, Peng Y S, et al. Algorithm for RGBD point cloud denoising and simplification based on K-means clustering[J]. Journal of System Simulation, 2016, 28(10): 2329-2334, 2341.

    Google Scholar

    [38] Biosca J M, Lerma J L. Unsupervised robust planar segmentation of terrestrial laser scanner point clouds based on fuzzy clustering methods[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2008, 63(1): 84-98.

    Google Scholar

    [39] Zhou W Q. An object-based approach for urban land cover classification: integrating LiDAR height and intensity data[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(4): 928-931.

    Google Scholar

    [40] Tatoglu A, Pochiraju K. Point cloud segmentation with LiDAR reflection intensity behavior[C]//IEEE International Conference on Robotics and Automation, Saint Paul, MN, USA, 2012: 786-790.

    Google Scholar

    [41] Franceschi M, Teza G, Preto N, et al. Discrimination between marls and limestones using intensity data from terrestrial laser scanner[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2009, 64(6): 522-528.

    Google Scholar

    [42] Pirotti F, Guarnieri A, Vettore A. Ground filtering and vegetation mapping using multi-return terrestrial laser scanning[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 76: 56-63.

    Google Scholar

    [43] Boyko A, Funkhouser T. Extracting roads from dense point clouds in large scale urban environment[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2011, 66(6): S2-S12.

    Google Scholar

    [44] Song H, Choi W, Kim H. Robust vision-based relative-localization approach using an RGB-depth camera and LiDAR sensor fusion[J]. IEEE Transactions on Industrial Electronics, 2016, 63(6): 3725-3736.

    Google Scholar

    [45] Lichti D D. Spectral filtering and classification of terrestrial laser scanner point clouds[J]. The Photogrammetric Record, 2005, 20(111): 218-240.

    Google Scholar

    [46] Thrun S. Learning occupancy grid maps with forward sensor models[J]. Autonomous Robots, 2003, 15(2): 111-127.

    Google Scholar

    [47] Kammel S, Ziegler J, Pitzer B, et al. Team AnnieWAY's autonomous system for the 2007 DARPA urban challenge[J]. Journal of Field Robotics, 2008, 25(9): 615-639.

    Google Scholar

    [48] Hoover A, Jean-Baptiste G, Jiang X, et al. An experimental comparison of range image segmentation algorithms[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996, 18(7): 673-689.

    Google Scholar

    [49] Kilian J, Haala N, Englich M. Capture and evaluation of airborne laser scanner data[C]//International Archives of Photogrammetry and Remote Sensing, Vienna, 1996, 31: 383-388.

    Google Scholar

    [50] Zhang K Q, Chen S C, Whitman D, et al. A progressive morphological filter for removing nonground measurements from airborne LIDAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(4): 872-882.

    Google Scholar

    [51] 黄作维, 刘峰, 胡光伟.基于多尺度虚拟格网的LiDAR点云数据滤波改进方法[J].光学学报, 2017, 37(8): 0828004.

    Google Scholar

    Huang Z W, Liu F, Hu G W. Improved method for LiDAR point cloud data filtering based on hierarchical pseudo-grid[J]. Acta Optica Sinica, 2017, 37(8): 0828004.

    Google Scholar

    [52] Cohen J. A coefficient of agreement for nominal scales[J]. Educational and Psychological Measurement, 1960, 20(1): 37-46.

    Google Scholar

    [53] 周纪芗, 茆诗松.质量管理统计方法[M]. 2版.北京:中国统计出版社, 2008: 433-440.

    Google Scholar

    Zhou J X, Mao S S. Statistical Methodsfor Quality Management[M]. 2nd ed. Beijing: China Statistics Press, 2008: 433-440.

    Google Scholar

    [54] Geiger A, Lenz P, Stiller C, et al. Vision meets robotics: the KITTI dataset[J]. The International Journal of Robotics Research, 2013, 32(11): 1231-1237.

    Google Scholar

    [55] Liu S D, Hu L, Shi T X, et al. Comparison of filtering algorithms for rock point cloud data[C]//Proceedings of the 2016 5th International Conference on Advanced Materials and Computer Science, 2016: 101-107.

    Google Scholar

    [56] Li J, Mei X, Prokhorov D, et al. Deep neural network for structural prediction and lane detection in traffic scene[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(3): 690-703.

    Google Scholar

  • Overview: LiDAR plays an important role in the field of unmanned driving. Ground filtering is the key technology to separate and extract the ground information according to the point cloud data acquired by LiDAR. First of all, this paper briefly describes the landmark events that vehicle LiDAR scans (VLS) established its position in the field of unmanned driving. According to the classification of mechanical, mixed solid and solid LiDAR, the working principle of each type of VLS is described, and the advantages and disadvantages of each type of VLS are discussed and compared. Secondly, the development of VLS ground filtering algorithms is studied. And the existing algorithms are sorted according to the processing methods of point cloud data. The ground filtering algorithm is divided into four categories: the ground filtering algorithm based on space division, the ground filtering algorithm based on scan lines, the ground filtering algorithm based on local characteristics, and the ground filtering algorithm based on additional information. According to the principles and filtering results of different algorithms, their characteristics, advantages and disadvantages are described. In addition to the above filtering algorithms, some ground filtering algorithms are also introduced. However, the adaptability of these algorithms to VLS point cloud data needs to be further improved. The common evaluation methods and standards of ground filtering accuracy are described to effectively evaluate the filtering results of various algorithms in different situations. There are three evaluation methods of filtering results: the manual calibration method, the visual inspection method, and the random sampling method. Furthermore, there are three evaluation standards for filtering accuracy: the cross table method, the Kappa coefficient method, and the algorithm time/space complexity. In order to show the characteristics of various algorithms, typical algorithms are selected for comparison from the ground filtering algorithm based on spatial division, the ground filtering algorithm based on scan lines and the ground filtering algorithm based on local characteristics. By changing the selected value of parameters, several groups of tests are carried out for each algorithm. The filtering results are arranged in ascending order according to Kappa coefficient, and the influence of parameter changes on the results is analyzed. The accuracy evaluation criteria are used to compare and analyze the optimal filtering results. Finally, the shortcomings of existing VLS ground filtering algorithms are summarized, and the development trend of VLS and VLS ground filtering algorithms is prospected. With the development of the computer technology and machine learning technology, filtering algorithms will be more intelligent and efficient.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(3)

Article Metrics

Article views(8814) PDF downloads(2287) Cited by(0)

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint