Shen Y J, Xie X, Pu M B, et al. Achromatic metalens based on coordinative modulation of propagation phase and geometric phase[J]. Opto-Electron Eng, 2020, 47(10): 200237. doi: 10.12086/oee.2020.200237
Citation: Shen Y J, Xie X, Pu M B, et al. Achromatic metalens based on coordinative modulation of propagation phase and geometric phase[J]. Opto-Electron Eng, 2020, 47(10): 200237. doi: 10.12086/oee.2020.200237

Achromatic metalens based on coordinative modulation of propagation phase and geometric phase

    Fund Project: Supported by National Natural Science Foundation of China (61822511, 61675208)
More Information
  • Metalens is considered as one of the most promising planar optical devices composed of the metasurface, but it is usually difficult to realize full-color imaging and display due to the narrow working bandwidth and large chromatic aberration. In this paper, a phase-controlled transmissive metalens is designed to realize the broadband achromatic focusing within 400 nm~650 nm, and the average focusing efficiency is about 29% at the focal plane within the bandwidth range. The titanium dioxide (TiO2) dielectric nanopillar with low loss and high refractive index as a truncated waveguide can control the propagation phase in the visible. At the same time, we analyze the dispersion modulation mechanism which merges the geometric and propagation phases, and the particle swarm optimization (PSO) algorithm is used to optimize the phase response database, and accomplish the phase matching between the ideal and actual wavefronts. The proposed broadband achromatic devices may broaden the applications of metalens in micro-imaging, computer vision, and machine vision.
  • 加载中
  • [1] Luo X G. Principles of electromagnetic waves in metasurfaces[J]. Science China Physics, Mechanics & Astronomy, 2015, 58(9): 594201.

    Google Scholar

    [2] 蒲明博, 王长涛, 王彦钦, 等.衍射极限尺度下的亚波长电磁学[J].物理学报, 2017, 66(14): 144101.

    Google Scholar

    Pu M B, Wang C T, Wang Y Q, et al. Subwavelength electromagnetics below the diffraction limit[J]. Acta Physica Sinica, 2017, 66(14): 144101.

    Google Scholar

    [3] Wu P C, Zhu W M, Shen Z X, et al. Broadband wide-angle multifunctional polarization converter via liquid-metal-based metasurface[J]. Advanced Optical Materials, 2017, 5(7): 1600938. doi: 10.1002/adom.201600938

    CrossRef Google Scholar

    [4] Pu M B, Li X, Ma X L, et al. Catenary optics for achromatic generation of perfect optical angular momentum[J]. Science Advances, 2015, 1(9): e1500396. doi: 10.1126/sciadv.1500396

    CrossRef Google Scholar

    [5] Yue F Y, Wen D D, Xin J T, et al. Vector vortex beam generation with a single plasmonic metasurface[J]. ACS Photonics, 2016, 3(9): 1558-1563. doi: 10.1021/acsphotonics.6b00392

    CrossRef Google Scholar

    [6] Wang S C, Ouyang X Y, Feng Z W, et al. Diffractive photonic applications mediated by laser reduced graphene oxides[J]. Opto-Electronic Advances, 2018, 1(2): 170002. doi: 10.29026/oea.2018.170002

    CrossRef Google Scholar

    [7] Li Z, Cheng H, Liu Z C, et al. Plasmonic airy beam generation by both phase and amplitude modulation with metasurfaces[J]. Advanced Optical Materials, 2016, 4(8): 1230-1235. doi: 10.1002/adom.201600108

    CrossRef Google Scholar

    [8] 陈俊妍, 张飞, 张明, 等.基于介质超表面的径向偏振贝塞尔透镜[J].光电工程, 2018, 45(11): 180124. doi: 10.12086/oee.2018.180124

    CrossRef Google Scholar

    Chen J Y, Zhang F, Zhang M, et al. Radially polarized bessel lens based on all-dielectric metasurface[J]. Opto-Electronic Engineering, 2018, 45(11): 180124. doi: 10.12086/oee.2018.180124

    CrossRef Google Scholar

    [9] Huang L L, Mühlenbernd H, Li X W, et al. Broadband hybrid holographic multiplexing with geometric metasurfaces[J]. Advanced Materials, 2015, 27(41): 6444-6449. doi: 10.1002/adma.201502541

    CrossRef Google Scholar

    [10] Huang Y W, Chen W T, Tsai W Y, et al. Aluminum plasmonic multicolor meta-hologram[J]. Nano Letters, 2015, 15(5): 3122-3127. doi: 10.1021/acs.nanolett.5b00184

    CrossRef Google Scholar

    [11] Ni X J, Kildishev A V, Shalaev V M. Metasurface holograms for visible light[J]. Nature Communications, 2013, 4(1): 2807. doi: 10.1038/ncomms3807

    CrossRef Google Scholar

    [12] Wan W W, Gao J, Yang X D. Full-color plasmonic metasurface holograms[J]. ACS Nano, 2016, 10(12): 10671-10680. doi: 10.1021/acsnano.6b05453

    CrossRef Google Scholar

    [13] Ni X J, Wong Z J, Mrejen M, et al. An ultrathin invisibility skin cloak for visible light[J]. Science, 2015, 349(6254): 1310-1314. doi: 10.1126/science.aac9411

    CrossRef Google Scholar

    [14] Xie X, Pu M B, Li X, et al. Dual-band and ultra-broadband photonic spin-orbit interaction for electromagnetic shaping based on single-layer silicon metasurfaces[J]. Photonics Research, 2019, 7(5): 586-593. doi: 10.1364/PRJ.7.000586

    CrossRef Google Scholar

    [15] Dou K H, Xin X, Pu M B, et al. Off-axis multi-wavelength dispersion controlling metalens for multi-color imaging[J]. Opto-Electronic Advances, 2020, 3(4): 190005. doi: 10.29026/oea.2020.190005

    CrossRef Google Scholar

    [16] Shrestha S, Overvig A C, Lu M, et al. Broadband achromatic dielectric metalenses[J]. Light: Science & Applications, 2018, 7: 85.

    Google Scholar

    [17] Li Y, Li X, Pu M B, et al. Achromatic flat optical components via compensation between structure and material dispersions[J]. Scientific Reports, 2016, 6(1): 19885. doi: 10.1038/srep19885

    CrossRef Google Scholar

    [18] Yan C, Li X, Pu M B, et al. Midinfrared real-time polarization imaging with all-dielectric metasurfaces[J]. Applied Physics Letters, 2019, 114(16): 161904. doi: 10.1063/1.5091475

    CrossRef Google Scholar

    [19] Khorasaninejad M, Aieta F, Kanhaiya P, et al. Achromatic metasurface lens at telecommunication wavelengths[J]. Nano Letters, 2015, 15(8): 5358-5362. doi: 10.1021/acs.nanolett.5b01727

    CrossRef Google Scholar

    [20] Shi Z J, Khorasaninejad M, Huang Y W, et al. Single-layer metasurface with controllable multiwavelength functions[J]. Nano Letters, 2018, 18(4): 2420-2427. doi: 10.1021/acs.nanolett.7b05458

    CrossRef Google Scholar

    [21] Groever B, Chen W T, Capasso F. Meta-lens doublet in the visible region[J]. Nano Letters, 2017, 17(8): 4902-4907. doi: 10.1021/acs.nanolett.7b01888

    CrossRef Google Scholar

    [22] Khorasaninejad M, Shi Z, Zhu A Y, et al. Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion[J]. Nano Letters, 2017, 17(3): 1819-1824.

    Google Scholar

    [23] Chen W T, Zhu A Y, Sanjeev V, et al. A broadband achromatic metalens for focusing and imaging in the visible[J]. Nature Nanotechnology, 2018, 13(3): 220-226. doi: 10.1038/s41565-017-0034-6

    CrossRef Google Scholar

    [24] Wang S M, Wu P C, Su V C, et al. A broadband achromatic metalens in the visible[J]. Nature Nanotechnology, 2018, 13(3): 227-232. doi: 10.1038/s41565-017-0052-4

    CrossRef Google Scholar

    [25] Wang S M, Wu P C, Su V C, et al. Broadband achromatic optical metasurface devices[J]. Nature Communications, 2017, 8(1): 187. doi: 10.1038/s41467-017-00166-7

    CrossRef Google Scholar

    [26] Pancharatnam S. Generalized theory of interference and its applications[J]. Proceedings of the Indian Academy of Sciences-Section A, 1956, 44(6): 398-417. doi: 10.1007/BF03046095

    CrossRef Google Scholar

    [27] Berry M V. Quantal phase factors accompanying adiabatic changes[J]. Proceedings of the Royal Society of London A Mathematical, and Physical Sciences, 1984, 392(1802): 45-57. doi: 10.1098/rspa.1984.0023

    CrossRef Google Scholar

    [28] Zhang F, Pu M B, Li X, et al. All-dielectric metasurfaces for simultaneous giant circular asymmetric transmission and wavefront shaping based on asymmetric photonic spin-orbit Interactions[J]. Advanced Functional Materials, 2017, 27(47): 1704295. doi: 10.1002/adfm.201704295

    CrossRef Google Scholar

    [29] Devlin R C, Khorasaninejad M, Chen W T, et al. High efficiency dielectric metasurfaces at visible wavelengths[Z]. arXiv 1603.02735[physics.optics], 2016.

    Google Scholar

    [30] Khorasaninejad M, Chen W T, Devlin R C, et al. Planar Lenses at Visible Wavelengths[Z]. arXiv 1605.02248[physics.optics], 2016.

    Google Scholar

    [31] Kennedy J, Eberhart R. Particle swarm optimization[C]//Proceedings of ICNN'95-International Conference on Neural Networks, Perth, 1995, 4: 1942-1948.

    Google Scholar

    [32] Barakat R. Rayleigh wavefront criterion[J]. Josa, 1965, 55(5): 572-573. doi: 10.1364/JOSA.55.000572

    CrossRef Google Scholar

  • Overview: As a two-dimension artificial electromagnetic material, metasurface provides the means to accurately control the wavefront by flexibly adjusting the phase, amplitude, and polarization of electromagnetic waves at will. At present, many applications based on metasurface have been proved, such as beam generator, optical holographic imaging, virtual shaping, and so on. As a plane lens, the metasurface can also generate a hyperbolic phase profile to obtain a focused beam with a higher diffraction efficiency. Traditional refractive lenses achieve phase accumulation by changing the thickness of optical materials, which is usually curved. In contrast, the metalens can realize phase modulation of electromagnetic waves in a plane manner. However, it is usually difficult to realize full-color imaging and display due to the narrow working bandwidth and large chromatic aberration which are caused by the intrinsic properties of the material. In this paper, a phase-controlled transmissive metalens is designed, to realize the broadband achromatic focusing within 400 nm~650 nm, and the average focusing efficiency is about 29% at the focal plane within the bandwidth range. The metalens is composed of titanium dioxide (TiO2) dielectric nanopillars arranged periodically on a silicon dioxide (SiO2, n=1.45) substrate. The nanopillar possesses low loss and high refractive index which can be treated as a truncated waveguide to control the propagation phase in the visible. At the same time, we analyze the dispersion modulation mechanism which merges the geometric and propagation phases, and the particle swarm optimization (PSO) algorithm is used to optimize the phase response database, and accomplish the phase matching between the ideal focusing and the actual wavefronts and realize the designed function. The proposed broadband achromatic planar optical device has a simple structure design of unit cell, therefore we can introduce more types of resonance units to realize the achromatic focusing function with a larger bandwidth.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Article Metrics

Article views(8955) PDF downloads(1803) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint