Zhang F, Guo Y H, Pu M B, et al. Metasurfaces enabled by asymmetric photonic spin-orbit interactions[J]. Opto-Electron Eng, 2020, 47(10): 200366. doi: 10.12086/oee.2020.200366
Citation: Zhang F, Guo Y H, Pu M B, et al. Metasurfaces enabled by asymmetric photonic spin-orbit interactions[J]. Opto-Electron Eng, 2020, 47(10): 200366. doi: 10.12086/oee.2020.200366

Metasurfaces enabled by asymmetric photonic spin-orbit interactions

    Fund Project: Supported by National Natural Science Foundation of China (61975210, 61875253), the Youth Innovation Promotion Association of the Chinese Academy of Sciences (2019371), and China Postdoctoral Science Foundation (2020M680153)
More Information
  • Photonic spin-orbit interaction is an important phenomenon ignored by classical optics. In recent years, studies have found that this phenomenon can be significantly enhanced by artificial subwavelength structures and adjusted on demand. Traditional metasurfaces only support symmetric photon spin-orbit interactions, and there are limitations in conjugate symmetry, which makes it difficult to use different spin states for multifunctional integration, complex optical field regulation, information encryption, and storage. The asymmetric photon spin-orbit interaction can decouple left and right circularly polarized light, which brings new opportunities for breaking the above-mentioned theoretical and application limitations. This article first introduces the principle and realization method of asymmetric photon spin-orbit interactions, secondly introduces the representative applications and characteristics of asymmetric photon-spin-orbit interactions, and finally outlines the challenges and prospects of asymmetric photon spin-orbit interactions for future research directions.
  • 加载中
  • [1] Marrucci L, Manzo C, Paparo D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media[J]. Physical Review Letters, 2006, 96(16): 163905. doi: 10.1103/PhysRevLett.96.163905

    CrossRef Google Scholar

    [2] Anandan J. The geometric phase[J]. Nature, 1992, 360(6402): 307–313. doi: 10.1038/360307a0

    CrossRef Google Scholar

    [3] Chyba T H, Wang L J, Mandel L, et al. Measurement of the Pancharatnam phase for a light beam[J]. Optics Letters, 1988, 13(7): 562–564. doi: 10.1364/OL.13.000562

    CrossRef Google Scholar

    [4] Berry M V. Quantal phase factors accompanying adiabatic changes[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1984, 392(1802): 45–57.

    Google Scholar

    [5] Biener G, Niv A, Kleiner V, et al. Formation of helical beams by use of Pancharatnam-Berry phase optical elements[J]. Optics Letters, 2002, 27(21): 1875–1877. doi: 10.1364/OL.27.001875

    CrossRef Google Scholar

    [6] Bomzon Z, Biener G, Kleiner V, et al. Space-variant Pancharatnam-Berry phase optical elements with computer-generated subwavelength gratings[J]. Optics Letters, 2002, 27(13): 1141–1143. doi: 10.1364/OL.27.001141

    CrossRef Google Scholar

    [7] Luo X G, Pu M B, Li X, et al. Broadband spin Hall effect of light in single nanoapertures[J]. Light: Science & Applications, 2017, 6(6): e16276.

    Google Scholar

    [8] Guo Y H, Pu M B, Zhao Z Y, et al. Merging geometric phase and plasmon retardation phase in continuously shaped metasurfaces for arbitrary orbital angular momentum generation[J]. ACS Photonics, 2016, 3(11): 2022–2029. doi: 10.1021/acsphotonics.6b00564

    CrossRef Google Scholar

    [9] Tang D L, Wang C T, Zhao Z Y, et al. Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing[J]. Laser & Photonics Reviews, 2015, 9(6): 713–719.

    Google Scholar

    [10] Li Z, Zhang T, Wang Y Q, et al. Achromatic broadband super-resolution imaging by super-oscillatory metasurface[J]. Laser & Photonics Reviews, 2018, 12(10): 1800064.

    Google Scholar

    [11] Li X, Chen L W, Li Y, et al. Multicolor 3D meta-holography by broadband plasmonic modulation[J]. Science Advances, 2016, 2(11): e1601102. doi: 10.1126/sciadv.1601102

    CrossRef Google Scholar

    [12] Pu M B, Li X, Guo Y H, et al. Nanoapertures with ordered rotations: symmetry transformation and wide-angle flat lensing[J]. Optics Express, 2017, 25(25): 31471–31477. doi: 10.1364/OE.25.031471

    CrossRef Google Scholar

    [13] Pu M B, Li X, Ma X L, et al. Catenary optics for achromatic generation of perfect optical angular momentum[J]. Science Advances, 2015, 1(9): e1500396. doi: 10.1126/sciadv.1500396

    CrossRef Google Scholar

    [14] Luo X G, Pu M B, Guo Y H, et al. Catenary functions meet electromagnetic waves: opportunities and promises[J]. Advanced Optical Materials, 2020, doi: 10.1002/adom.202001194.

    CrossRef Google Scholar

    [15] Luo X G. Engineering Optics 2.0: A Revolution in Optical Theories, Materials, Devices and Systems[M]. Singapore: Springer, 2019.

    Google Scholar

    [16] Li X, Pu M B, Zhao Z Y, et al. Catenary nanostructures as compact Bessel beam generators[J]. Scientific Reports, 2016, 6: 20524. doi: 10.1038/srep20524

    CrossRef Google Scholar

    [17] Wang Y Q, Pu M B, Zhang Z J, et al. Quasi-continuous metasurface for ultra-broadband and polarization-controlled electromagnetic beam deflection[J]. Scientific Reports, 2016, 5: 17733. doi: 10.1038/srep17733

    CrossRef Google Scholar

    [18] Guo Y H, Yan L S, Pan W, et al. Scattering engineering in continuously shaped metasurface: an approach for electromagnetic illusion[J]. Scientific Reports, 2016, 6: 30154. doi: 10.1038/srep30154

    CrossRef Google Scholar

    [19] Guo Y H, Huang Y J, Li X, et al. Polarization-controlled broadband accelerating beams generation by single catenary-shaped metasurface[J]. Advanced Optical Materials, 2019, 7(18): 1900503. doi: 10.1002/adom.201900503

    CrossRef Google Scholar

    [20] Zhang F, Zeng Q Y, Pu M B, et al. Broadband and high-efficiency accelerating beam generation by dielectric catenary metasurfaces[J]. Nanophotonics, 2020, 9(9): 2829–2837. doi: 10.1515/nanoph-2020-0057

    CrossRef Google Scholar

    [21] Liu K P, Guo Y H, Pu M B, et al. Wide field-of-view and broadband terahertz beam steering based on gap Plasmon geodesic antennas[J]. Scientific Reports, 2017, 7: 41642. doi: 10.1038/srep41642

    CrossRef Google Scholar

    [22] Tan X H. Anomalous scattering-induced circular dichroism in continuously shaped metasurface[J]. Opto-Electronic Engineering, 2017, 44(1): 87–91.

    Google Scholar

    [23] Wang D P, Hwang Y, Dai Y M, et al. Broadband high-efficiency chiral splitters and holograms from dielectric nanoarc metasurfaces[J]. Small, 2019, 15(20): 1900483. doi: 10.1002/smll.201900483

    CrossRef Google Scholar

    [24] Shi Z J, Zhu A Y, Li Z Y, et al. Continuous angle-tunable birefringence with freeform metasurfaces for arbitrary polarization conversion[J]. Science Advances, 2020, 6(23): eaba3367. doi: 10.1126/sciadv.aba3367

    CrossRef Google Scholar

    [25] Sell D, Yang J J, Doshay S, et al. Large-angle, multifunctional metagratings based on freeform multimode geometries[J]. Nano Letters, 2017, 17(6): 3752–3757. doi: 10.1021/acs.nanolett.7b01082

    CrossRef Google Scholar

    [26] 代成伟, 闫超, 曾庆玉, 等.一种新型贝塞尔光束器件的设计方法[J].光电工程, 2020, 47(6): 190190. doi: 10.12086/oee.2020.190190

    CrossRef Google Scholar

    Dai C W, Yan C, Zeng Q Y, et al. A method of designing new Bessel beam generator[J]. Opto-Electronic Engineering, 2020, 47(6): 190190. doi: 10.12086/oee.2020.190190

    CrossRef Google Scholar

    [27] Li Y F, Ma H, Wang J F, et al. High-efficiency tri-band quasi-continuous phase gradient metamaterials based on spoof surface plasmon polaritons[J]. Scientific Reports, 2017, 7: 40727. doi: 10.1038/srep40727

    CrossRef Google Scholar

    [28] Luo X G. Catenary Optics[M]. Singapore: Springer, 2019.

    Google Scholar

    [29] Zhang X H, Li X, Jin J J, et al. Polarization-independent broadband meta-holograms via polarization-dependent nanoholes[J]. Nanoscale, 2018, 10(19): 9304–9310. doi: 10.1039/C7NR08428E

    CrossRef Google Scholar

    [30] Khorasaninejad M, Chen W T, Zhu A Y, et al. Multispectral Chiral Imaging with a metalens[J]. Nano Letters, 2016, 16(7): 4595–4600. doi: 10.1021/acs.nanolett.6b01897

    CrossRef Google Scholar

    [31] Zhang F, Pu M B, Luo J, et al. Symmetry breaking of photonic spin-orbit interactions in metasurfaces[J]. Opto-Electronic Engineering, 2017, 44(3): 319–325.

    Google Scholar

    [32] Zhang F, Pu M B, Li X, et al. All-dielectric metasurfaces for simultaneous giant circular asymmetric transmission and wavefront shaping based on asymmetric photonic spin–orbit interactions[J]. Advanced Functional Materials, 2017, 27(47): 1704295. doi: 10.1002/adfm.201704295

    CrossRef Google Scholar

    [33] 李雄, 马晓亮, 罗先刚.超表面相位调控原理及应用[J].光电工程, 2017, 44(3): 255–275. doi: 10.3969/j.issn.1003-501X.2017.03.001

    CrossRef Google Scholar

    Li X, Ma X L, Luo X G. Principles and applications of metasurfaces with phase modulation[J]. Opto-Electronic Engineering, 2017, 44(3): 255–275. doi: 10.3969/j.issn.1003-501X.2017.03.001

    CrossRef Google Scholar

    [34] Deng Z L, Deng J H, Zhuang X, et al. Diatomic metasurface for vectorial holography[J]. Nano Letters, 2018, 18(5): 2885–2892. doi: 10.1021/acs.nanolett.8b00047

    CrossRef Google Scholar

    [35] Deng Z L, Jin M K, Ye X, et al. Full-color complex-amplitude vectorial holograms based on multi-freedom metasurfaces[J]. Advanced Functional Materials, 2020, 30(21): 1910610. doi: 10.1002/adfm.201910610

    CrossRef Google Scholar

    [36] Balthasar Mueller J P, Rubin N A, Devlin R C, et al. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization[J]. Physical Review Letters, 2017, 118(11): 113901. doi: 10.1103/PhysRevLett.118.113901

    CrossRef Google Scholar

    [37] Devlin R C, Ambrosio A, Rubin N A, et al. Arbitrary spin-to-orbital angular momentum conversion of light[J]. Science, 2017, 358(6365): 896–901. doi: 10.1126/science.aao5392

    CrossRef Google Scholar

    [38] Wu L, Tao J, Zheng G X. Controlling phase of arbitrary polarizations using both the geometric phase and the propagation phase[J]. Physical Review B, 2018, 97(24): 245426. doi: 10.1103/PhysRevB.97.245426

    CrossRef Google Scholar

    [39] Li Z L, Chen C, Guan Z Q, et al. Three-channel metasurfaces for simultaneous meta-holography and meta-nanoprinting: a single-cell design approach[J]. Laser & Photonics Reviews, 2020, 14(6): 2000032.

    Google Scholar

    [40] Wang B, Dong F L, Feng H, et al. Rochon-prism-like planar circularly polarized beam splitters based on dielectric metasurfaces[J]. ACS Photonics, 2018, 5(5): 1660–1664. doi: 10.1021/acsphotonics.7b01191

    CrossRef Google Scholar

    [41] Huo P C, Zhang C, Zhu W Q, et al. photonic spin-multiplexing metasurface for switchable spiral phase contrast imaging[J]. Nano Letters, 2020, 20(4): 2791–2798. doi: 10.1021/acs.nanolett.0c00471

    CrossRef Google Scholar

    [42] Fan Q B, Zhu W Q, Liang Y Z, et al. Broadband generation of photonic spin-controlled arbitrary accelerating light beams in the visible[J]. Nano Letters, 2019, 19(2): 1158–1165. doi: 10.1021/acs.nanolett.8b04571

    CrossRef Google Scholar

    [43] Zhang C, Divitt S, Fan Q B, et al. Low-loss metasurface optics down to the deep ultraviolet region[J]. Light: Science & Applications, 2020, 9: 55.

    Google Scholar

    [44] Li S Q, Li X Y, Wang G X, et al. Multidimensional manipulation of photonic spin hall effect with a single-layer dielectric metasurface[J]. Advanced Optical Materials, 2019, 7(5): 1801365. doi: 10.1002/adom.201801365

    CrossRef Google Scholar

    [45] Arbabi A, Horie Y, Bagheri M, et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission[J]. Nature Nanotechnology, 2015, 10(11): 937–943. doi: 10.1038/nnano.2015.186

    CrossRef Google Scholar

    [46] Zhou H Q, Sain B, Wang Y T, et al. Polarization-encrypted orbital angular momentum multiplexed metasurface holography[J]. ACS Nano, 2020, 14(5): 5553–5559. doi: 10.1021/acsnano.9b09814

    CrossRef Google Scholar

    [47] Zhao R Z, Sain B, Wei Q S, et al. Multichannel vectorial holographic display and encryption[J]. Light: Science & Applications, 2018, 7: 95.

    Google Scholar

    [48] Zhang K, Yuan Y Y, Ding X M, et al. High-efficiency metalenses with switchable functionalities in microwave region[J]. ACS Applied Materials & Interfaces, 2019, 11(31): 28423–28430.

    Google Scholar

    [49] Yuan Y Y, Sun S, Chen Y, et al. A fully phase-modulated metasurface as an energy-controllable circular polarization router[J]. Advanced Science, 2020, 7(18): 2001437. doi: 10.1002/advs.202001437

    CrossRef Google Scholar

    [50] Yuan Y Y, Zhang K, Ratni B, et al. Independent phase modulation for quadruplex polarization channels enabled by chirality-assisted geometric-phase metasurfaces[J]. Nature Communications, 2020, 11(1): 4186. doi: 10.1038/s41467-020-17773-6

    CrossRef Google Scholar

    [51] 陈俊妍, 张飞, 张明, 等.基于介质超表面的径向偏振贝塞尔透镜[J].光电工程, 2018, 45(11): 180124. doi: 10.12086/oee.2018.180124

    CrossRef Google Scholar

    Chen J Y, Zhang F, Zhang M, et al. Radially polarized Bessel lens based on all-dielectric metasurface[J]. Opto-Electronic Engineering, 2018, 45(11): 180124. doi: 10.12086/oee.2018.180124

    CrossRef Google Scholar

    [52] Xu Y H, Li Q, Zhang X Q, et al. Spin-decoupled multifunctional metasurface for asymmetric polarization generation[J]. ACS Photonics, 2019, 6(11): 2933–2941. doi: 10.1021/acsphotonics.9b01047

    CrossRef Google Scholar

    [53] Gao Y J, Xiong X, Wang Z H, et al. Simultaneous generation of arbitrary assembly of polarization states with geometrical-scaling-induced phase modulation[J]. Physical Review X, 2020, 10(3): 031035. doi: 10.1103/PhysRevX.10.031035

    CrossRef Google Scholar

    [54] He Q, Zhang F, Pu M B, et al. Monolithic metasurface spatial differentiator enabled by asymmetric photonic spin-orbit interactions[J]. Nanophotonics, 2020, doi: 10.1515/nanoph-2020-0366.

    CrossRef Google Scholar

    [55] Zhou J X, Qian H L, Chen C F, et al. Optical edge detection based on high-efficiency dielectric metasurface[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(23): 11137–11140. doi: 10.1073/pnas.1820636116

    CrossRef Google Scholar

    [56] De Galarreta C R, Alexeev A M, Au Y Y, et al. Nonvolatile reconfigurable phase-change metadevices for beam steering in the near infrared[J]. Advanced Functional Materials, 2018, 28(10): 1704993. doi: 10.1002/adfm.201704993

    CrossRef Google Scholar

    [57] Chu C H, Tseng M L, Chen J, et al. Active dielectric metasurface based on phase-change medium[J]. Laser & Photonics Reviews, 2016, 10(6): 986–994.

    Google Scholar

    [58] Chen Y G, Li X, Sonnefraud Y, et al. Engineering the phase front of light with phase-change material based planar lenses[J]. Scientific Reports, 2015, 5: 8660. doi: 10.1038/srep08660

    CrossRef Google Scholar

    [59] Choi C, Lee S Y, Mun S E, et al. Metasurface with nanostructured Ge2Sb2Te5 as a platform for broadband-operating wavefront switch[J]. Advanced Optical Materials, 2019, 7(12): 1900171. doi: 10.1002/adom.201900171

    CrossRef Google Scholar

    [60] Li J X, Kamin S, Zheng G X, et al. Addressable metasurfaces for dynamic holography and optical information encryption[J]. Science Advances, 2018, 4(6): eaar6768. doi: 10.1126/sciadv.aar6768

    CrossRef Google Scholar

    [61] Yin X H, Steinle T, Huang L L, et al. Beam switching and bifocal zoom lensing using active plasmonic metasurfaces[J]. Light: Science & Applications, 2017, 6(7): e17016.

    Google Scholar

    [62] Zhang M, Pu M B, Zhang F, et al. Plasmonic metasurfaces for switchable photonic spin–orbit interactions based on phase change materials[J]. Advanced Science, 2018, 5(10): 1800835. doi: 10.1002/advs.201800835

    CrossRef Google Scholar

    [63] Nemati A, Wang Q, Hong M H, et al. Tunable and reconfigurable metasurfaces and metadevices[J]. Opto-Electronic Advances, 2018, 1(5): 180009.

    Google Scholar

    [64] Zhang F, Xie X, Pu M B, et al. Multistate switching of photonic angular momentum coupling in phase-change metadevices[J]. Advanced Materials, 2020, 32(39): 1908194. doi: 10.1002/adma.201908194

    CrossRef Google Scholar

  • Overview: It is well known that photons carry not only polarization-dependent spin angular momentum but also space-dependent orbit angular momentum. Photonic spin-orbit interaction, which describes the coupling between spin and orbital angular momenta during the propagation of light, is an important phenomenon ignored by classical optics. In recent years, it has been found that this phenomenon can be significantly enhanced by artificial subwavelength structures and adjusted on demand. Traditional metasurfaces only support symmetric photon spin-orbit interactions, and there are limitations in conjugate symmetry, which makes it difficult to use different spin states for multifunctional integration, complex optical field regulation, information encryption, and storage. For example, orbit angular momentum beams generated by traditional metasurfaces mentioned above are always in pairs with opposite topological charges, and holographic images for two opposite spins are usually central symmetric. This conjugate symmetry causes fundamental limitations in energy efficiency and information fidelity for spin-selective multifunctional devices. The asymmetric photon spin-orbit interaction can decouple left and right circularly polarized light, which brings new opportunities for breaking the above-mentioned theoretical and application limitations. This review first introduces the principle and realization method of asymmetric photon spin-orbit interactions. Then, some representative applications and characteristics of asymmetric photon-spin-orbit interactions are introduced. For example, the first monolayer all-dielectric metasurface, simultaneously exhibiting the wavefront manipulation ability and giant circular asymmetric transmission more than four times greater than the previously reported monolayer metasurfaces, was experimentally demonstrated by asymmetric photon spin-orbit interactions. Furthermore, a monolithic metasurface spatial differentiator without 4-F systems was also experimentally demonstrated based on asymmetric photonic spin-orbit interactions, enabling edge detection systems with higher integration level and compactness. Finally, the challenges and prospects for future research directions of asymmetric photon spin-orbit interactions are outlined.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Article Metrics

Article views(7720) PDF downloads(1355) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint