Underwater wireless optical communication (UWOC) can provide a high-speed and flexible communication link for underwater platforms. This paper introduces the basic structure of a UWOC link and points out the optimization schemes for a UWOC system. Absorption, scattering, and turbulence will affect the performance of a UWOC system. A comprehensive study of channel characteristics can guide the design of transmitters, receivers, and related signal processing technologies. The performance of UWOC can also be optimized by multiplexing technologies, single-photon detection technologies, and alignment systems. A comprehensive test platform could provide a necessary test environment for further sea trials and the practical applications of UWOC. The paper is expected to serve as a guideline for researchers related to UWOC.
Home > Journal Home > Opto-Electronic Engineering
Opto-Electronic Engineering
ISSN: 1003-501X
CN: 51-1346/O4
Monthly, included in CA, Scopus, CSCD
CN: 51-1346/O4
Monthly, included in CA, Scopus, CSCD
Link structure of underwater wireless optical communication and progress on performance optimization
Author Affiliations

First published at:Sep 17, 2020
Abstract
Overview
References
2 Saeed N, Celik A, Al-Naffouri T Y, et al. Underwater optical wireless communications, networking, and localization: a survey[J]. AdHocNetworks, 2019, 94: 101935. DOI:10.1016/j.adhoc.2019.101935
3 Stojanovic M, Preisig J. Underwater acoustic communication channels: propagation models and statistical characterization[J]. IEEECommunicationsMagazine, 2009, 47(1): 84–89. DOI:10.1109/MCOM.2009.4752682
4 Au W W, Nachtigall P E, Pawloski J L. Acoustic effects of the ATOC signal (75 Hz, 195 dB) on dolphins and whales[J]. The Journal of the Acoustical Society of America, 1997, 101(5): 2973–2977. DOI:10.1121/1.419304
6 Strand M P. Imaging model for underwater range-gated imaging systems[J]. ProceedingsofSPIE, 1991, 1537: 151–160. DOI:10.1117/12.48880
7 Tang S J, Dong Y H, Zhang X D. Impulse response modeling for underwater wireless optical communication links[J]. IEEETransactionsonCommunications, 2014, 62(1): 226–234. DOI:10.1109/TCOMM.2013.120713.130199
8 Karp S. Optical communications between underwater and above surface (Satellite) terminals[J]. IEEETransactionsonCommunications, 1976, 24(1): 66–81. DOI:10.1109/TCOM.1976.1093200
9 Longacre J R, Freeman D E, Snow J B. High-data-rate underwater laser communications[J]. Proceedings of SPIE, 1990, 1302: 433–439. DOI:10.1117/12.21462
10 Snow J B, Flatley J P, Freeman D E, etal. Underwater propagation of high-data-rate laser communications pulses[J]. Proceedings of SPIE, 1992, 1750: 419–427. DOI:10.1117/12.140670
11 Hanson F, Radic S. High bandwidth underwater optical communication[J]. AppliedOptics, 2008, 47(2): 277–283. DOI:10.1364/AO.47.000277
13 Shen C, Guo Y J, Oubei H M, etal. 20-meter underwater wireless optical communication link with 1.5 Gbps data rate[J]. OpticsExpress, 2016, 24(22): 25502–25509. DOI:10.1364/OE.24.025502
14 Xu J, Song Y H, Yu X Y, etal. Underwater wireless transmission of high-speed QAM-OFDM signals using a compact red-light laser[J]. OpticsExpress, 2016, 24(8): 8097–8109. DOI:10.1364/OE.24.008097
16 Kong M W, Lv W C, Ali T, etal. 10-m 9.51-Gb/s RGB laser diodes-based WDM underwater wireless optical communication[J]. OpticsExpress, 2017, 25(17): 20829–20834. DOI:10.1364/OE.25.020829
17 Huang Y F, Tsai C T, Chi Y C, et al. Filtered multicarrier OFDM encoding on blue laser diode for 14.8-Gbps seawater transmission[J]. JournalofLightwaveTechnology, 2018, 36(9): 1739–1745. DOI:10.1109/JLT.2017.2782840
18 Li C Y, Lu H H, Tsai W S, etal. 16 Gb/s PAM4 UWOC system based on 488-nm LD with light injection and optoelectronic feedback techniques[J]. OpticsExpress, 2017, 25(10): 11598–11605. DOI:10.1364/OE.25.011598
19 Liu X Y, Yi S Y, Zhou X L, etal. 34.5 m underwater optical wireless communication with 2.70 Gbps data rate based on a green laser diode with NRZ-OOK modulation[J]. OpticsExpress, 2017, 25(22): 27937–27947. DOI:10.1364/OE.25.027937
20 Fei C, Hong X J, Zhang G W, etal. 16.6 Gbps data rate for underwater wireless optical transmission with single laser diode achieved with discrete multi-tone and post nonlinear equalization[J]. OpticsExpress, 2018, 26(26): 34060–34069. DOI:10.1364/OE.26.034060
21 Fei C, Zhang J W, Zhang G W, etal. Demonstration of 15-M 7.33-Gb/s 450-nm underwater wireless optical discrete multitone transmission using post nonlinear equalization[J]. JournalofLightwaveTechnology, 2018, 36(3): 728–734. DOI:10.1109/JLT.2017.2780841
22 Hong X J, Fei C, Zhang G W, et al. Discrete multitone transmission for underwater optical wireless communication system using probabilistic constellation shaping to approach channel capacity limit[J]. OpticsLetters, 2019, 44(3): 558–561. DOI:10.1364/OL.44.000558
23 Lu C H, Wang J M, Li S B, et al. 60m/2.5Gbps underwater optical wireless communication with NRZ-OOK modulation and digital nonlinear equalization[C]//Proceedings of 2019 Conference on Lasers and Electro-Optics, San Jose, CA, USA, 2019: 1–2.
24 Wang J M, Lu C H, Li S B, et al. 100 m/500 Mbps underwater optical wireless communication using an NRZ-OOK modulated 520 nm laser diode[J]. OpticsExpress, 2019, 27(9): 12171–12181. DOI:10.1364/OE.27.012171
25 Bluecomm 100-wireless underwater optical communication[EB/OL]. https://www.sonardyne.com/product/bluecomm-underwater-optical-communication-system/.
26 Baykal Y. Scintillations of LED sources in oceanic turbulence[J]. AppliedOptics, 2016, 55(31): 8860–8863. DOI:10.1364/AO.55.008860
27 Shi J Y, Zhu X, Wang F M, etal. Net data rate of 14.6 Gbit/s underwater VLC utilizing silicon substrate common-anode five primary colors LED[C]//Proceedings of2019OpticalFiberCommunicationsConferenceandExhibition, San Diego, CA, USA, 2019: 1–3.
28 Wang F M, Liu Y F, Jiang F Y, et al. High speed underwater visible light communication system based on LED employing maximum ratio combination with multi-PIN reception[J]. OpticsCommunications, 2018, 425: 106–112. DOI:10.1016/j.optcom.2018.04.073
29 Tian P F, Liu X Y, Yi S Y, etal. High-speed underwater optical wireless communication using a blue GaN-based micro-LED[J]. OpticsExpress, 2017, 25(2): 1193–1201. DOI:10.1364/OE.25.001193
30 Xu J, Kong M W, Lin A B, etal. Directly modulated green-light diode-pumped solid-state laser for underwater wireless optical communication[J]. OpticsLetters, 2017, 42(9): 1664–1667. DOI:10.1364/OL.42.001664
31 Li C Y, Lu H H, Tsai W S, etal. A 5 m/25 Gbps underwater wireless optical communication system[J]. IEEEPhotonicsJournal, 2018, 10(3): 7904909.
32 Kong M W, Chen Y F, Sarwar R, etal. Underwater wireless optical communication using an arrayed transmitter/receiver and optical superimposition-based PAM-4 signal[J]. OpticsExpress, 2018, 26(3): 3087–3097. DOI:10.1364/OE.26.003087
33 Zhuang B, Li C, Wu N, et al. First demonstration of 400Mb/s PAM4 signal transmission over 10-meter underwater channel using a blue LED and a digital linear pre-equalizer[C]//Proceedings of2017ConferenceonLasersandElectro-Optics, San Jose, CA, USA, 2017: 1–2.
34 Sui M H, Zhou Z G. The modified PPM modulation for underwater wireless optical communication[C]//Proceedings of2009InternationalConferenceonCommunicationSoftwareandNetworks, Macau, China, 2009: 173–177.
35 Hu S, Mi L, Zhou T H, et al. 35.88 attenuation lengths and 3.32 bits/photon underwater optical wireless communication based on photon-counting receiver with 256-PPM[J]. OpticsExpress, 2018, 26(17): 21685–21699. DOI:10.1364/OE.26.021685
37 Mi X L, Dong Y H. Polarized digital pulse interval modulation for underwater wireless optical communications[C]//Proceedings of OCEANS 2016 - Shanghai, Shanghai, China, 2016: 1–4.
38 Xiao S. Researches on joint source channel coding in wireless channel[D]. Xi'an: Xidian University, 2004.
39 Cox W C, Simpson J A, Domizioli C P, et al. An underwater optical communication system implementing Reed-Solomon channel coding[C]//Proceedings of OCEANS2008, Quebec City, QC, Canada, 2008: 1–6.
40 Mattoussi F, Khalighi M A, Bourennane S. Improving the performance of underwater wireless optical communication links by channel coding[J]. AppliedOptics, 2018, 57(9): 2115–2120. DOI:10.1364/AO.57.002115
41 Campbell J C. Recent advances in telecommunications avalanche photodiodes[J]. JournalofLightwaveTechnology, 2007, 25(1): 109–121. DOI:10.1109/JLT.2006.888481
42 Cova S, Ghioni M, Lacaita A, et al. Avalanche photodiodes and quenching circuits for single-photon detection[J]. AppliedOptics, 1996, 35(12): 1956–1976. DOI:10.1364/AO.35.001956
44 Li C, Wang B K, Wang P L, etal. Generation and transmission of 745Mb/s ofdm signal using a single commercial blue LED and an analog post-equalizer for underwater optical wireless communications[C]//Proceedings of 2016AsiaCommunicationsandPhotonicsConference, Wuhan, China, 2016: 1–3.
45 Zhang Z Y, Lai Y J, Lv J L, etal. Over 700 MHz –3 dB bandwidth UOWC system based on blue HV-LED with T-bridge pre-equalizer[J]. IEEEPhotonicsJournal, 2019, 11(3): 7903812.
46 Ren Y X, Li L, Wang Z, etal. Orbital angular momentum-based space division multiplexing for high-capacity underwater optical communications[J]. ScientificReports, 2016, 6: 33306. DOI:10.1038/srep33306
47 Mobley C D. LightandWater:RadiativeTransferinNaturalWaters[M]. New York: Academic Press, 1994.
48 Petzold T J. Volume Scattering Functions for Selected Ocean Waters[M]. San Diego: Scripps Institution of Oceanography, 1972.
49 Cochenour B M, Mullen L J, Laux A E. Characterization of the beam-spread function for underwater wireless optical communications links[J]. IEEEJournalofOceanicEngineering, 2008, 33(4): 513–521. DOI:10.1109/JOE.2008.2005341
50 Jaruwatanadilok S. Underwater wireless optical communication channel modeling and performance evaluation using vector radiative transfer theory[J]. IEEEJournalonSelectedareasinCommunications, 2008, 26(9): 1620–1627. DOI:10.1109/JSAC.2008.081202
52 Haltrin V I. One-parameter two-term Henyey-Greenstein phase function for light scattering in seawater[J]. AppliedOptics, 2002, 41(6): 1022–1028. DOI:10.1364/AO.41.001022
53 Sahu S K, Shanmugam P. Semi-analytical modeling and parameterization of particulates-in-water phase function for forward angles[J]. OpticsExpress, 2015, 23(17): 22291–22307. DOI:10.1364/OE.23.022291
54 Sahu S K, Shanmugam P. A theoretical study on the impact of particle scattering on the channel characteristics of underwater optical communication system[J]. OpticsCommunications, 2018, 408: 3–14. DOI:10.1016/j.optcom.2017.06.030
55 Vali Z, Gholami A, Ghassemlooy Z, et al. Experimental study of the turbulence effect on underwater optical wireless communications[J]. AppliedOptics, 2018, 57(28): 8314–8319. DOI:10.1364/AO.57.008314
56 Ooi B S, Sun X B, Alkhazragi O, etal. Visible diode lasers for high bitrate underwater wireless optical communications[C]//Proceedings of Optical Fiber Communication Conference 2019, San Diego, CA, USA, 2019.
57 Yi X, Li Z, Liu Z J. Underwater optical communication performance for laser beam propagation through weak oceanic turbulence[J]. AppliedOptics, 2015, 54(6): 1273–1278. DOI:10.1364/AO.54.001273
58 Oubei H M, Zedini E, ElAfandy R T, etal. Efficient weibull channel model for salinity induced turbulent underwater wireless optical communications[C]//Proceedings of2017Opto-ElectronicsandCommunicationsConference(OECC)andPhotonicsGlobalConference, Singapore, Singapore, 2017: 1–2.
59 Oubei H M, Zedini E, ElAfandy R T, etal. Simple statistical channel model for weak temperature-induced turbulence in underwater wireless optical communication systems[J]. OpticsLetters, 2017, 42(13): 2455–2458. DOI:10.1364/OL.42.002455
60 Oubei H M, Duran J R, Janjua B, etal. 4.8 Gbit/s 16-QAM-OFDM transmission based on compact 450-nm laser for underwater wireless optical communication[J]. OpticsExpress, 2015, 23(18): 23302–23309. DOI:10.1364/OE.23.023302
64 Duntley S Q. Light in the sea[J]. Journal of the Optical Society of America, 1963, 53(2): 214–233.
70 Hamza T, Khalighi M A, Bourennane S, et al. On the suitability of employing silicon photomultipliers for underwater wireless optical communication links[C]//Proceedings of the201610thInternationalSymposiumonCommunicationSystems, NetworksandDigitalSignalProcessing, Prague, Czech Republic, 2016: 1–5.
76 Zhang H H, Dong Y H. Link misalignment for underwater wireless optical communications[C]//Proceedings of2015AdvancesinWirelessandOpticalCommunications, Riga, Latvia, 2015: 215–218.
78 Cai C K, Zhao Y F, Zhang J Y, et al. Experimental demonstration of an underwater wireless optical link employing orbital angular momentum (OAM) modes with fast auto-alignment system[C]//Proceedings of Optical Fiber Communication Conference 2019, San Diego, CA, USA, 2019: 1–3.
83 Jamali M V, Salehi J A. On the BER of multiple-input multiple-output underwater wireless optical communication systems[C]//Proceedings of the 20154thInternationalWorkshoponOpticalWirelessCommunications, Istanbul, Turkey, 2015: 26–30.
87 Sawa T, Nishimura N, Tojo K, et al. Practical performance and prospect of underwater optical wireless communication:——results of optical characteristic measurement at visible light band under water and communication tests with the prototype modem in the sea[J]. IEICETransactionsonFundamentalsofElectronicsCommunicationsandComputerSciences, 2019, E102-A(1): 156–167. DOI:10.1587/transfun.E102.A.156
89 Vavoulas A, Sandalidis H G, Varoutas D. Underwater optical wireless networks: ak-connectivity analysis[J]. IEEEJournalofOceanicEngineering, 2014, 39(4): 801–809.
92 Celik A, Saeed N, Al-Naffouri T Y, et al. Modeling and performance analysis of multihop underwater optical wireless sensor networks[C]//Proceedings of2018IEEEWirelessCommunicationsandNetworkingConference, Barcelona, Spain, 2018: 1–6.
Keywords:
Funds:
National Key R&D Program of China (2016YFC0302403) and Strategic Priority Research Program of the Chinese Academy of Sciences (XDA22030208)
Export Citations as:
For
Get Citation:
Zhang Yufan, Li Xin, Lv Weichao, et al. Link structure of underwater wireless optical communication and progress on performance optimization[J]. Opto-Electronic Engineering, 2020, 47(9): 190734.