大口径强激光光学元件超精密制造技术研究进展

樊非,徐曦,许乔,等. 大口径强激光光学元件超精密制造技术研究进展[J]. 光电工程,2020,47(8):200135. doi: 10.12086/oee.2020.200135
引用本文: 樊非,徐曦,许乔,等. 大口径强激光光学元件超精密制造技术研究进展[J]. 光电工程,2020,47(8):200135. doi: 10.12086/oee.2020.200135
Fan F, Xu X, Xu Q, et al. Progress on ultra precision manufacturing technology of large-aperture high-power laser optics[J]. Opto-Electron Eng, 2020, 47(8): 200135. doi: 10.12086/oee.2020.200135
Citation: Fan F, Xu X, Xu Q, et al. Progress on ultra precision manufacturing technology of large-aperture high-power laser optics[J]. Opto-Electron Eng, 2020, 47(8): 200135. doi: 10.12086/oee.2020.200135

大口径强激光光学元件超精密制造技术研究进展

  • 基金项目:
    国家科技重大专项(2017ZX04022001-101)
详细信息
    作者简介:
    通讯作者: 许乔(1972-),男,博士,研究员,主要从事先进光学制造的研究。E-mail:xuqiao@vip.sina.com
  • 中图分类号: TH74

Progress on ultra precision manufacturing technology of large-aperture high-power laser optics

  • Fund Project: Supported by National Science and Technology Major Project of the Ministry of Science and Technology of China (2017ZX04022001-101)
More Information
  • 惯性约束聚变高功率固体激光装置研制对大口径光学元件提出了全频段精度控制指标要求,以及高效率、批量化制造需求。本文围绕“超精密、确定性”强激光光学元件全流程制造方法,总结了近几年大口径强激光光学元件超精密制造技术取得的重要进展,重点介绍了单点金刚石超精密切削技术、非球面超精密数控磨削技术、确定性抛光技术等一系列关键技术,以及相关工艺及装备在强激光光学元件批量制造流程线中的应用情况。

  • Overview: The high-power solid-state laser facility for inertial confinement fusion is the largest optical system with the most complex structure. It requires tens of thousands of large-aperture high-power laser optics, including phosphate neodymium glass amplifier, plane mirrors, aspheric focusing lens, diffraction elements, and nonlinear laser crystals. In order to further improve the beam quality and realize the stable operation under high laser flux, these large-aperture optics are required to precisely control the full-spatial frequency error, and realize efficient mass-manufacturing. This review summarizes the recent critical progress in the field of ultra-precise manufacturing of large-aperture optics for high-power laser facility, especially for the technology and equipment of single point diamond fly-cutting, aspheric ultra-precision grinding, and deterministic polishing. In addition, the application status of these key technologies in the mass-manufacturing flow-line is stated specifically. Moreover, with the continuous improvement of comprehensive performance for high-power laser facility, the typical requirements for ultra-precise manufacturing of high-power laser optics are as follows: 1) The development of advanced optical manufacturing technology will march towards the extreme conditions, such as complex aspheric structures, nano-scale shape control, sub-nanometer ultra-smooth surface, etc. 2) The damage-free machining over optical surfaces is in urgent demand, and it is necessary to break through the traditional polishing mechanism and technology, in order to develop novel principles, methods and technologies to realize near non-defect manufacturing. 3) The efficiency of mass manufacturing of optics needs to be improved, and further improvement of the reliability and stability of equipment, as well as the enhancement of flexible and intelligent manufacturing is of great demand. This will help to establish the fast response ability to support the research and development on modern optical system.

  • 加载中
  • 图 1  KDP晶体超精密飞切机床动态特性的测量与评价平台

    Figure 1.  Detection and evaluation platform for dynamic characteristics of KDP crystal single point diamond fly-cutting machine tool

    图 2  400 mm×400 mm KDP晶体超精密加工结果。

    Figure 2.  Results of 400 mm×400 mm KDP crystal after single point diamond fly-cutting.

    图 3  KDP晶体脆-塑转变深度仿真结果。

    Figure 3.  Simulation results of brittle ductile transition depth in cutting KDP crystal.

    图 4  非球面平行磨削加工原理

    Figure 4.  Principle of parallel grinding of aspheric surface

    图 5  非球面超精密制造与传统加工技术比较

    Figure 5.  Comparison of aspheric ultra-precision manufacturing and traditional processing technology

    图 6  圆弧金刚石砂轮对滚研磨修整

    Figure 6.  The dressing principle of arc diamond wheel by roll abrading

    图 7  对滚研磨修整后金刚石砂轮的形状误差和微观形貌。

    Figure 7.  Form errors of diamond wheel after dressing.

    图 8  离轴非球面元件磨削面形误差、亚表面缺陷深度结果。

    Figure 8.  Results of off-axis aspheric optics after grinding.

    图 9  楔形非球面镜气囊抛光实物图与原理图。

    Figure 9.  Bonnet polishing picture and principle for off-axis wedge aspheric lens.

    图 10  面形预测与实验验证。

    Figure 10.  Surface shape prediction and experimental verification.

    图 11  气囊修整实物与数学模型。

    Figure 11.  Bonnet dressing picture and mathematical model.

    图 12  离轴楔形非球面透镜气囊抛光结果。

    Figure 12.  Results of off-axis wedge aspheric lens by bonnet polishing.

    图 13  确定性全口径抛光中元件面形精度控制方法

    Figure 13.  Control principle of workpiece precision in deterministic full-aperture polishing

    图 14  采用不同抛光盘类型的确定性全口径抛光机床。

    Figure 14.  The deterministic full-aperture polishers with different kinds of plate materials.

    图 15  确定性全口径抛光加工典型实验结果。

    Figure 15.  The typical processing results of the deterministic full-aperture polishers.

    图 16  去除速率稳定性控制实验统计。

    Figure 16.  Experimental statistics of removal rate stability control.

    图 17  参数化匀滑修正中高频误差实验结果

    Figure 17.  Parameterized smoothing correction for medium and high frequency errors

    图 18  400 mm×400 mm离轴楔形非球面透镜小工具数控抛光结果。

    Figure 18.  Results of 400 mm×400 mm off-axis wedge aspheric lens by CCOS.

    图 19  理论MRF去除函数。

    Figure 19.  Theoretical MRF polishing spot.

    图 20  元件不同曲率与MRF抛光斑体积去除率分布曲线

    Figure 20.  Optics curvature and MRF polishing spot volume removal rate distribution curve

    图 21  磁流变加工非球面实物图

    Figure 21.  MRF processing aspheric surface

  • [1]

    Campbell J H, Hawley-Fedder R A, Stolz C J, et al. NIF optical materials and fabrication technologies: An overview[J]. Proceedings of SPIE, 2004, 5341: 84–101. doi: 10.1117/12.538471

    [2]

    许乔, 王健, 马平, 等.先进光学制造技术进展[J].强激光与粒子束, 2013, 25(12): 3098–3105. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qjgylzs201312004

    Xu Q, Wang J, Ma P, et al. Progress of advanced optical manufacturing technology[J]. High Power Laser and Particle Beams, 2013, 25(12): 3098–3105. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qjgylzs201312004

    [3]

    Spaeth M L, Manes K R, Kalantar D H, et al. Description of the NIF laser[J]. Fusion Science and Technology, 2016, 69(1): 25–145. doi: 10.13182/FST15-144

    [4]

    Fuchs B A, Hed P P, Baker P C. Fine diamond turning of KDP crystals[J]. Applied Optics, 1986, 25(11): 1733–1735. doi: 10.1364/AO.25.001733

    [5]

    Liang Y C, Chen W Q, Bai Q S, et al. Design and dynamic optimization of an ultraprecision diamond flycutting machine tool for large KDP crystal machining[J]. The International Journal of Advanced Manufacturing Technology, 2013, 69(1–4): 237–244. doi: 10.1007/s00170-013-5020-z

    [6]

    Chen M J, Li M Q, Cheng J, et al. Study on characteristic parameters influencing laser-induced damage threshold of KH2PO4 crystal surface machined by single point diamond turning[J]. Journal of Applied Physics, 2011, 110(11): 113103. doi: 10.1063/1.3664692

    [7]

    An C H, Deng C Y, Miao J G, et al. Investigation on the generation of the waviness errors along feed-direction on flycutting surfaces[J]. The International Journal of Advanced Manufacturing Technology, 2018, 96(1): 1457–1465. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=16b421d1caafb9fec2b84745011706c8

    [8]

    Yang X, An C H, Wang Z Z, et al. Research on surface topography in ultra-precision flycutting based on the dynamic performance of machine tool spindle[J]. The International Journal of Advanced Manufacturing Technology, 2016, 87(5–8): 1957–1965. doi: 10.1007/s00170-016-8583-7

    [9]

    Zhang F H, Wang S F, An C H, et al. Full-band error control and crack-free surface fabrication techniques for ultra-precision fly cutting of large-aperture KDP crystals[J]. Frontiers of Mechanical Engineering, 2017, 12(2): 193–202. doi: 10.1007/s11465-017-0448-8

    [10]

    Wang S F, An C H, Zhang F H, et al. An experimental and theoretical investigation on the brittle ductile transition and cutting force anisotropy in cutting KDP crystal[J]. International Journal of Machine Tools and Manufacture, 2016, 106: 98–108. doi: 10.1016/j.ijmachtools.2016.04.009

    [11]

    Wang S F, An C H, Zhang F H, et al. Simulation research on the anisotropic cutting mechanism of KDP crystal using a new constitutive model[J]. Machining Science and Technology: An International Journal, 2017, 21(2): 202–222. doi: 10.1080/10910344.2017.1283960

    [12]

    Guo Y B, Chen B K, Zhang Y, et al. Research on parallel grinding method of non-axisymmetric aspheric lens[J]. Chinese Journal of Mechanical Engineering, 2004, 17(1): 149–151. doi: 10.3901/CJME.2004.01.149

    [13]

    Shore P, Morantz P, Luo X C, et al. Big OptiX ultra precision grinding/measuring system[J]. Proceedings of SPIE, 2005, 5965: 241–248.

    [14]

    Suzuki H, Murakam S. An ultraprecision grinding machine for non-axisymmetric aspheric mirrors[J]. Nanotechnology, 1995, 6(4): 152–157. doi: 10.1088/0957-4484/6/4/008

    [15]

    Zhou L, Wei Q C, Zhao S J, et al. Computer-aided NC programming system for large scale and off-axis aspheric optics in parallel grinding[J]. Proceedings of SPIE, 2019, 10842: 108420V. http://www.researchgate.net/publication/330920406_Computer-aided_NC_programming_system_for_large_scale_and_off-axis_aspheric_optics_in_parallel_grinding

    [16]

    Zhou L, Wei Q C, Zheng N, et al. Dressing technology of arc diamond wheel by roll abrading in aspheric parallel grinding[J]. The International Journal of Advanced Manufacturing Technology, 2019, 105(5): 2699–2706. http://link.springer.com/article/10.1007/s00170-019-04446-y

    [17]

    周炼, 谢瑞清, 陈贤华, 等.熔石英磨削砂轮截面轮廓分析与优化[J].金刚石与磨料磨具工程, 2018, 38(1): 59–64. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgsymlmjgc201801011

    Zhou L, Xie R Q, Chen X H, et al. Analysis and optimization on cross section profile of fused silica grinding wheel[J]. Diamond and Abrasives Engineering, 2018, 38(1): 59–64. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgsymlmjgc201801011

    [18]

    Zhou L, Zheng N, Chen X H, et al. Crack depth uniformity control techniques for large scale fused silica optics in grinding process[J]. Proceedings of SPIE, 2019, 11068: 1106815.

    [19]

    Zhou L, Wei Q C, Li J, et al. The effect of diamond wheel wear on surface and sub-surface quality in fused silica optics grinding[J]. IOP Conference Series Materials Science and Engineering, 2019, 677: 022091. doi: 10.1088/1757-899X/677/2/022091

    [20]

    Walker D D, Brooks D, Freeman R, et al. The first aspheric form and texture results from a production machine embodying the precession process[J]. Proceedings of SPIE, 2001, 4451: 267–276. doi: 10.1117/12.453652

    [21]

    Pan R, Zhong B, Chen D J, et al. Modification of tool influence function of bonnet polishing based on interfacial friction coefficient[J]. International Journal of Machine Tools and Manufacture, 2018, 124: 43–52. doi: 10.1016/j.ijmachtools.2017.09.003

    [22]

    Zhong B, Wang C J, Chen X H, et al. Time-varying tool influence function model of bonnet polishing for aspheric surfaces[J]. Applied Optics, 2019, 58(4): 1101–1109. doi: 10.1364/AO.58.001101

    [23]

    Zhong B, Chen X H, Deng W H, et al. Improving material removal determinacy based on the compensation of tool influence function[J]. Proceedings of SPIE, 2018, 10710: 107102P.

    [24]

    Zhong B, Huang H Z, Chen X H, et al. Modelling and simulation of Mid-spatial-frequency error generation in CCOS[J]. Journal of the European Optical Society-Rapid Publications, 2018, 14(1): 4. doi: 10.1186/s41476-018-0075-y

    [25]

    Zhong B, Chen X H, Pan R, et al. The effect of tool wear on the removal characteristics in high-efficiency bonnet polishing[J]. The International Journal of Advanced Manufacturing Technology, 2017, 91(9): 3653–3662. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ff727396e264ae4817005324fb93c665

    [26]

    Zhong B, Huang H Z, Chen X H, et al. Impact of pad conditioning on the bonnet polishing process[J]. The International Journal of Advanced Manufacturing Technology, 2018, 98(1): 539–549. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f5504f5d77479b9633f898d12db9466c

    [27]

    Chen X H, Yu H D, Zhong B, et al. Development of key technologies in the fabrication of large aperture off-axis wedge focusing lens[J]. Proceedings of SPIE, 2016, 10255: 102551C. http://www.researchgate.net/publication/314709758_Development_of_key_technologies_in_the_fabrication_of_large_aperture_off-axis_wedge_focusing_lens

    [28]

    Ke X L, Wang C J, Guo Y B, et al. Modeling of tool influence function for high-efficiency polishing[J]. The International Journal of Advanced Manufacturing Technology, 2016, 84(9–12): 2479–2489. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9e8d8e246e2aff6e30eed7787aa5e79d

    [29]

    Pal R K, Garg H, Karar V. Full aperture optical polishing process: overview and challenges[C]//CAD/CAM, Robotics and Factories of the Future, New Delhi, 2016: 461–470.

    [30]

    Suratwala T I, Feit M D, Steele W A. Toward Deterministic Material removal and surface figure during fused silica pad polishing[J]. Journal of the American Ceramic Society, 2010, 93(5): 1326–1340. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1111/j.1551-2916.2010.03607.x

    [31]

    Xie R Q, Zhao S J, Liao D F, et al. Recent advances in rapid polishing process of large aperture optical flats[J]. Proceedings of SPIE, 2019, 10841: 108410V. http://www.researchgate.net/publication/330743787_Recent_advances_in_rapid_polishing_process_of_large_aperture_optical_flats

    [32]

    Xie R Q, Zhao S J, Liao D F, et al. Suppressing surface low and mid-spatial frequency errors of large optics during full-aperture rapid polishing[C]//Optical Fabrication and Testing 2019, OSA Technical Digest, Washington, DC United States, 2019: OM3A.2.

    [33]

    Xie R Q, Zhao S J, Liao D F, et al. Numerical simulation and experimental study of surface waviness during full aperture rapid planar polishing[J]. The International Journal of Advanced Manufacturing Technology, 2018, 97(9): 3273–3282. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b3b66924c70931633161ad087a10e88a

    [34]

    Xie R Q, Zhao S J, Liao D F, et al. Effects of kinematics and groove parameters on the mid-spatial frequency error of optics induced during full aperture polishing[J]. Precision Engineering, 2019, 57: 176–188. doi: 10.1016/j.precisioneng.2019.04.002

    [35]

    Xie R Q, Liao D F, Chen J, et al. In-situ shape measurement technology during large aperture optical planar continuous polishing process[J]. Proceedings of SPIE, 2018, 10710: 1071033. http://www.researchgate.net/publication/323567037_In-situ_shape_measurement_technology_during_large_aperture_optical_planar_continuous_polishing_process

    [36]

    Liao D F, Xie R Q, Sun R K, et al. Improvement of the surface shape error of the pitch lap to a deterministic continuous polishing process[J]. Journal of Manufacturing Processes, 2018, 36: 565–570. doi: 10.1016/j.jmapro.2018.10.040

    [37]

    Liao D F, Xie R Q, Zhao S J, et al. Surface shape development of the pitch lap under the loading of the conditioner in continuous polishing process[J]. Journal of the American Ceramic Society, 2019, 102(6): 3129–3140. doi: 10.1111/jace.16178

    [38]

    Liao D F, Zhang F H, Xie R Q, et al. Deterministic control of material removal distribution to converge surface figure in full-aperture polishing[J]. Journal of Manufacturing Processes, 2020, 53: 144–152. doi: 10.1016/j.jmapro.2020.02.015

    [39]

    Liao D F, Zhang F H, Xie R Q, et al. Effect of interfacial friction force on material removal in full aperture continuous polishing process[J]. Precision Engineering, 2020, 63: 214–219. doi: 10.1016/j.precisioneng.2020.03.003

    [40]

    Kim D W, Park W H, An H K, et al. Parametric smoothing model for visco-elastic polishing tools[J]. Optics Express, 2010, 18(21): 22515–22526. doi: 10.1364/OE.18.022515

    [41]

    Kim D W, Burge J H. Rigid conformal polishing tool using non-linear visco-elastic effect[J]. Optics Express, 2010, 18(3): 2242–2257. doi: 10.1364/OE.18.002242

    [42]

    Song C, Walker D D, Yu G Y. Misfit of rigid tools and interferometer subapertures on off-axis aspheric mirror segments[J]. Optical Engineering, 2011, 50(7): 073401. doi: 10.1117/1.3597328

    [43]

    Peng W Q, Li S Y, Guan C L, et al. Ultra-precision optical surface fabricated by hydrodynamic effect polishing combined with magnetorheological finishing[J]. Optik, 2018, 156: 374–383. doi: 10.1016/j.ijleo.2017.11.055

    [44]

    Hou J, Wang H X, Chen X H, et al. Effect of magnetorheological processing parameters on polishing spots[J]. Proceedings of SPIE, 2018, 10847: 108470P. http://www.researchgate.net/publication/329594329_Effect_of_magnetorheological_processing_parameters_on_polishing_spots

    [45]

    Patel R. Mechanism of chain formation in nanofluid based MR fluids[J]. Journal of Magnetism and Magnetic Materials, 2011, 323(10): 1360–1363. doi: 10.1016/j.jmmm.2010.11.046

    [46]

    Susan-Resiga D, Bica D, Vékás L. Flow behaviour of extremely bidisperse magnetizable fluids[J]. Journal of Magnetism and Magnetic Materials, 2010, 322(20): 3166–3172. doi: 10.1016/j.jmmm.2010.05.055

    [47]

    Menapace J A, Ehrmann P E, Bayramian A J, et al. Imprinting high-gradient topographical structures onto optical surfaces using magnetorheological finishing: manufacturing corrective optical elements for high-power laser applications[J]. Applied Optics, 2016, 55(19): 5240–5248. doi: 10.1364/AO.55.005240

    [48]

    Hou J, Cao M C, Wang H X, et al. Determination of optimized removal functions for imprinting continuous phase plates using fuzzy theory[J]. Applied Optics, 2018, 57(21): 6089–6096. doi: 10.1364/AO.57.006089

    [49]

    Hou J, Liao D F, Wang H X. Development of multi-pitch tool path in computer-controlled optical surfacing processes[J]. Journal of the European Optical Society-Rapid Publications, 2017, 13(1): 22. doi: 10.1186/s41476-017-0050-z

  • 加载中

(21)

计量
  • 文章访问数:  10468
  • PDF下载数:  2824
  • 施引文献:  0
出版历程
收稿日期:  2020-04-21
修回日期:  2020-06-20
刊出日期:  2020-08-01

目录

/

返回文章
返回