弱手性超表面中的超常极化旋转

崔建华,马晓亮,蒲明博,等. 弱手性超表面中的超常极化旋转[J]. 光电工程,2020,47(7):190052. doi: 10.12086/oee.2020.190052
引用本文: 崔建华,马晓亮,蒲明博,等. 弱手性超表面中的超常极化旋转[J]. 光电工程,2020,47(7):190052. doi: 10.12086/oee.2020.190052
Cui J H, Ma X L, Pu M B, et al. Extraordinary strong optical rotation in weak chiral metasurface[J]. Opto-Electron Eng, 2020, 47(7): 190052. doi: 10.12086/oee.2020.190052
Citation: Cui J H, Ma X L, Pu M B, et al. Extraordinary strong optical rotation in weak chiral metasurface[J]. Opto-Electron Eng, 2020, 47(7): 190052. doi: 10.12086/oee.2020.190052

弱手性超表面中的超常极化旋转

  • 基金项目:
    国家自然科学基金资助项目(61622508,61622509)
详细信息
    作者简介:
    通讯作者: 罗先刚(1970-),男,博士,研究员,主要从事微纳光学的研究。E-mail:lxg@ioe.ac.cn
  • 中图分类号: TB33

Extraordinary strong optical rotation in weak chiral metasurface

  • Fund Project: Supported by National Natural Science Foundation of China (61622508, 61622509)
More Information
  • 本文介绍了一种能够产生超强旋光性的弱手性极薄(λ/10)亚波长结构的超表面。该超表面的单元结构由介质层以及设置在介质层上下表面的两层椭圆金属贴片组成,两层椭圆金属贴片之间存在一个扭转角的关系。当扭转角为80°时,超表面在谐振频点11.89 GHz处能将入射线偏振电磁波转换为交叉极化透射波,其透过率超过94%。这种超表面重量轻、体积小,为极化旋转提供了一种可靠的方法。若将其拓展到光波波段,该超表面在弱手性分子的生物学检测中有潜在的应用。

  • Overview: A preternatural and extremely thin (λ/10) metasurface with weak asymmetric unit structure is presented here to demonstrate extraordinary strong chirality. The unit cell of metasurface is composed of a double layer of elliptical metal patches with a certain twisted angle and a medium sandwiched between them. The relationship between two elliptical metal structures are not orthogonal, but there is a twisted angle ϕ=90-2θ=80°(θ=5°) around their normal axis in z direction. Therein θ indicates the included angle between the long axis of the metallic elliptic and its adjacent coordinate axis. Optical activity is realized in this metasurface and the incident linearly polarized wave is converted into its cross-polarization wave at the resonant frequency with the cross-polarization transmittance rate higher than 94% at center frequency 11.89 GHz.

    Inaddition, the polarization rotation characters of the metasurface under other different included angles θ are studied. When the included angle θ=0°, the transmission of the x- and y-polarized components are both close to 0 at the 11.89 GHz, which proves that the unit cell is achiral and presents giant reflective character in this situation; when the included angle θ varied with the step of 5° from 10° to 25°, the resonance peak of cross polarization transmission wave will split into two, and the two split resonant peaks shift to both sides with the enlargement of the rotation angle.

    The chiral characters of the metasurface are studed by observing the surface current distributions of the subwavelength structure. When θ=0°, the subwavelength structure generates symmetrical surface current distribution, so the superimposed field intensity of the induced electric field in the x direction is zero. That is, the structure of subwavelength element is isotropic, and there is no chirality. When θ=5°, due to the asymmetry of the structure and strong coupling between the layers, the y-polarization of the incident electromagnetic wave in the subwavelength structure spark surface current distribution along x direction, so as to realize the transformation of polarization, which demonstrate extraordinary strong chirality. When θ larger than 10°, the surface current distribution modes of unit cells generate corresponding to two different polarization rotation frequencies, which is demonstrate that there is double frequency chirality in the metasurface.

    The light weight and miniaturization of this metasurface provide a reliable approach for polarization manipulation. If extended to light waveband, the chiral metasurface may have potentials in biological applications such as detection of weak chiral molecules etc.

  • 加载中
  • Figure 1.  (a) The unit cell of the proposed polarization rotator with weak chirality; (b) Operating principle diagram of the polarization rotator

    Figure 2.  The transmission curves of the proposed unit cell when θ equals to 5° (a) and 0° (b)

    Figure 3.  Cross-polarization transmission curves vs. dielectric parameters of the substrate

    Figure 4.  Cross-polarization transmission curves vs. loss tangent of the substrate

    Figure 5.  Cross-polarization transmission curves vs. thicknesses of the substrate

    Figure 6.  The changing situation of the transmission with the unit cell at different little rotate angles

    Figure 7.  The changing situation of the transmission with the unit cell at different large included angles

    Figure 8.  The surface current distributions of unit cells with the included angle θ=5° ((a), (b)) and θ=0° (c)

    Figure 9.  The surface current distributions of unit cells with the included angle θ=15° at frequencies of 11.60 GHz (a) and 12.14 GHz (b)

    Figure 10.  The simulated polarization rotation angle (a) and ellipticity (b) of the weak chiral metasurface

  • [1]

    Cheng Y Z, Nie Y, Wu L, et al. Giant circular dichroism and negative refractive index of chiral metamaterial based on split-ring resonators[J]. Physical Review Letters, 2013, 138: 421-432. http://www.oalib.com/paper/1726630

    [2]

    Zhang S, Park Y S, Li J, et al. Negative refractive index in chiral metamaterials[J]. Physical Review Letters, 2009, 102(2): 023901. doi: 10.1103/PhysRevLett.102.023901

    [3]

    田小永, 尹丽仙, 李涤尘.三维超材料制造技术现状与趋势[J].光电工程, 2017, 44(1): 69-76. doi: 10.3969/j.issn.1003-501X.2017.01.006

    Tian X Y, Yin L X, Li D C. Current situation and trend of fabrication technologies for three-dimensional metamaterials[J]. Opto-Electronic Engineering, 2017, 44(1): 69-76. doi: 10.3969/j.issn.1003-501X.2017.01.006

    [4]

    Pendry J B, Holden A J, Stewart W J, et al. Extremely low frequency plasmons in metallic mesostructures[J]. Physical Review Letters, 1996, 76(2): 4773-4776. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Arxiv000000411213

    [5]

    Cardano F, Marrucci L. Spin-orbit photonics[J]. Nature Photonics, 2015, 9(12): 776-778. doi: 10.1038/nphoton.2015.232

    [6]

    Luo W J, Xiao S Y, He Q, et al. Photonic spin hall effect with nearly 100% efficiency[J]. Advanced Optical Materials, 2015, 3(8): 1102-1108. doi: 10.1002/adom.201500068

    [7]

    Díaz-Rubio A, Asadchy V S, Elsakka A, et al. From the generalized reflection law to the realization of perfect anomalous reflectors[J]. Science Advance, 2017, 3(8): e1602714. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Arxiv000001406087

    [8]

    Chen J B, Wang Y, Jia B H, et al. Observation of the inverse Doppler effect in negative-index materials at optical frequencies[J]. Nature Photonics, 2011, 5(4): 239-242. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=700dd5a03fe7fd597afbcb99631fe28e

    [9]

    Reed E J. Physical optics: backwards Doppler shifts[J]. Nature Photonics, 2011, 5(4): 199-200. http://www.nature.com/nphoton/journal/v5/n4/abs/nphoton.2011.40.html

    [10]

    Liu Y C, Ke Y G, Zhou J X, et al. Manipulating the spin-dependent splitting by geometric doppler effect[J]. Optics Express, 2015, 23(13): 16682-16692. doi: 10.1364/OE.23.016682

    [11]

    张子洁, 梁瑜章, 徐挺.双曲超材料及超表面研究进展[J].光电工程, 2017, 44(3): 276-288. doi: 10.3969/j.issn.1003-501X.2017.03.002

    Zhang Z J, Liang Y Z, Xu T. Research advances of hyperbolic metamaterials and metasurfaces[J]. Opto-Electronic Engineering, 2017, 44(3): 276-288. doi: 10.3969/j.issn.1003-501X.2017.03.002

    [12]

    Nemati A, Wang Q, Hong M H, et al. Tunable and reconfigurable metasurfaces and metadevices[J]. Opto-Electronic Advances, 2018, 1(5): 180009. http://www.researchgate.net/publication/326665789_Tunable_and_reconfigurable_metasurfaces_and_metadevices

    [13]

    Rogacheva A V, Fedotov V A, Schwanecke A S, et al. Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure[J]. Physical Review Letters, 2006, 97(17): 177401. doi: 10.1103/PhysRevLett.97.177401

    [14]

    Plum E, Zhou J, Dong J, et al. Metamaterial with negative index due to chirality[J]. Physical Review B, 2009, 79(3): 035407. doi: 10.1103/PhysRevB.79.035407

    [15]

    Zhou J F, Dong J F, Wang B N, et al. Negative refractive index due to chirality[J]. Physical Review B, 2009, 79: 121104. doi: 10.1103/PhysRevB.79.121104

    [16]

    Li Z F, Alici K B, Colak E, et al. Complementary chiral metamaterials with giant optical activity and negative refractive index[J]. Applied Physics Letters, 2011, 98(16): 161907. doi: 10.1063/1.3574909

    [17]

    Gansel J K, Thiel M, Rill M S, et al. Gold helix photonic metamaterial as broadband circular polarizer[J]. Science, 2009, 325(5947): 1513-1515. doi: 10.1126/science.1177031

    [18]

    Li Z F, Zhao R K, Koschny T, et al. Chiral metamaterials with negative refractive index based on four "U" split ring resonators[J]. Applied Physics Letters, 2010, 97(8): 081901. doi: 10.1063/1.3457448

    [19]

    Ma X L, Huang C, Pu M B, et al. Multi-band circular polarizer using planar spiral metamaterial structure[J]. Optics Express, 2012, 20(14): 16050-16058. doi: 10.1364/OE.20.016050

    [20]

    Ma X L, Huang C, Pu M B, et al. Dual-band asymmetry chiral metamaterial based on planar spiral structure[J]. Applied Physics Letters, 2012, 101(16): 161901. doi: 10.1063/1.4756901

    [21]

    Song K, Liu Y H, Fu Q H, et al. 90° polarization rotator with rotation angle independent of substrate permittivity and incident angles using a composite chiral metamaterial[J]. Optics Express, 2013, 21(6): 7439-7446. doi: 10.1364/OE.21.007439

    [22]

    Song K, Zhao X P, Liu Y H, et al. A frequency-tunable 90°-polarization rotation device using composite chiral metamaterials[J]. Applied Physics Letters, 2013, 103(10): 101908. doi: 10.1063/1.4820810

    [23]

    Cheng Z Z, Cheng Y Z. A multi-functional polarization convertor based on chiral metamaterial for terahertz waves[J]. Optics Communications, 2019, 435: 178-182. doi: 10.1016/j.optcom.2018.11.038

    [24]

    Huang C, Ma X L, Pu M B, et al. Dual-band 90° polarization rotator using twisted split ring resonators array[J]. Optics Communications, 2013, 291: 345-348. doi: 10.1016/j.optcom.2012.10.046

    [25]

    Cong L Q, Cao W, Zhang X Q, et al. A perfect metamaterial polarization rotator[J]. Applied Physics Letters, 2013, 103(17): 171107. doi: 10.1063/1.4826536

    [26]

    Mutlu M, Ozbay E. A transparent 90° polarization rotator by combining chirality and electromagnetic wave tunneling[J]. Applied Physics Letters, 2012, 100(5): 051909. doi: 10.1063/1.3682591

  • 加载中

(10)

计量
  • 文章访问数:  6981
  • PDF下载数:  1340
  • 施引文献:  0
出版历程
收稿日期:  2019-01-29
修回日期:  2019-08-06
刊出日期:  2020-07-01

目录

/

返回文章
返回