基于运动补偿的DMD无掩模光刻拼接误差校正

姜旭,杨絮,刘红,等. 基于运动补偿的DMD无掩模光刻拼接误差校正[J]. 光电工程,2020,47(6):190387. doi: 10.12086/oee.2020.190387
引用本文: 姜旭,杨絮,刘红,等. 基于运动补偿的DMD无掩模光刻拼接误差校正[J]. 光电工程,2020,47(6):190387. doi: 10.12086/oee.2020.190387
Jiang X, Yang X, Liu H, et al. DMD maskless lithography stitching error correction based on motion compensation[J]. Opto-Electron Eng, 2020, 47(6): 190387. doi: 10.12086/oee.2020.190387
Citation: Jiang X, Yang X, Liu H, et al. DMD maskless lithography stitching error correction based on motion compensation[J]. Opto-Electron Eng, 2020, 47(6): 190387. doi: 10.12086/oee.2020.190387

基于运动补偿的DMD无掩模光刻拼接误差校正

  • 基金项目:
    吉林省科技发展计划项目(20170204053GX)
详细信息
    作者简介:
    通讯作者: 杨絮(1980-),女,博士,副教授,主要从事数字图像处理方面的研究。E-mail:Ibaomi@cust.edu.cn
  • 中图分类号: TN29

DMD maskless lithography stitching error correction based on motion compensation

  • Fund Project: Supported by Jilin Province Science and Technology Development Plan Project (20170204053GX)
More Information
  • 在DMD光刻设备中,由于机械装调产生的机械误差导致曝光图像间产生拼接误差,进而造成曝光图像出现错位、交叠等问题。为了消除DMD在大面积曝光过程中的曝光误差,对误差校正方法进行研究。首先,利用显微镜对曝光后的基板进行测量得到曝光误差。然后,在曝光误差的基础上建立误差模型。最后,根据误差模型提出了基于运动补偿的DMD光刻系统误差校正的方法,该方法有别于目前已有的误差校正方法。实验结果表明,在微米级图像曝光过程中,曝光误差减少了80%以上,DMD曝光中心偏移距离由175 μm减少为21 μm。有效提高曝光图像的拼接精度,满足对大面积曝光图像的高质量、高精度等要求。

  • Overview: Digital lithography is the core technology of PCB board. As the wiring density increases and the etch line width decreases, high-precision PCB boards place higher demands on lithography systems. Digital micromirror device (DMD) is a key component in digital lithography. The DMD unit used in this paper has a pixel size of 13.68 μm×13.68 μm and has the advantages of high filling ratio, fast response and high contrast. Mask lithography can expose micron or even nanoscale patterns. In the large-area exposure process, since the size of the PCB board is much larger than the size of the DMD, in order to obtain a high-precision PCB board, it is necessary to improve the stitching precision of the exposed image. But for the DMD lithography equipment, due to the exposed images joint errors which caused by mechanical loading errors, problems such as misalignment and overlap of the exposed images may arise. After the pixel is exposed, the platform will re-exposure the moving distance. Ideally, the pixel should be moved from position 1 to position 3 for exposure due to tilt error. The effect, in the actual test, the DMD moves along the platform scanning direction, that is, the X-axis positive direction moves a certain distance, then the pixel is moved to the position 2, resulting in the problem of misalignment of the exposed image. In order to eliminate the exposure error of DMD during large-area exposure, the error correction method was studied. Firstly, the exposure error was got by measuring the exposed substrate with a microscope. Then, an error model was established based on the known exposure error. Finally, an error correction based on motion compensation for DMD lithography system was proposed based on the error model. After measuring the tilt error, the method calculates the XY-axis offset of the image by using the triangular relationship, and then realizes the error compensation through the platform motion. The experimental results show that during the micron image exposure process, the exposure error is reduced by more than 80%, and the DMD exposure center offset distance is reduced from 175 μm to 21 μm. The stitching accuracy of the exposed image is improved effectively, which meets the requirements for high quality and high precision of large-area exposure images.

  • 加载中
  • 图 1  数字光刻系统示意图

    Figure 1.  Schematic diagram of digital lithography system

    图 2  (a) 不平行性误差的示意图;(b)曝光过程中倾角误差的示意图

    Figure 2.  (a) Schematic diagram of non-parallel error; (b) Schematic diagram of the inclination error during exposure

    图 3  曝光实验步骤示意图

    Figure 3.  Exposure experiment steps

    图 4  角度测量示意图

    Figure 4.  Angle measurement diagram

    图 5  曝光图案示意图

    Figure 5.  Exposure pattern

    图 6  大面积曝光结果

    Figure 6.  Large area exposure results

    图 7  误差测量结果

    Figure 7.  Error measurement result

    图 8  校正后曝光实验结果

    Figure 8.  Corrected exposure experiment results

    图 9  校正后大面积曝光结果

    Figure 9.  Corrected large area exposure results

    表 1  多次曝光校正前后对比

    Table 1.  Comparison before and after multiple exposure correction

    测量位置 首次曝光
    误差倾角/(°)
    首次曝光
    中心偏移/mm
    二次曝光
    误差倾角/(°)
    二次曝光
    中心偏移/mm
    倾角误差
    缩减率/%
    1 1.776 0.198 0.127 0.014 92.9
    2 1.523 0.169 0.083 0.009 94.6
    3 1.983 0.165 0.248 0.021 95.9
    4 2.254 0.188 0.376 0.032 83.4
    5 1.657 0.138 0.143 0.012 91.4
    6 1.857 0.155 0.237 0.020 87.3
    7 1.675 0.140 0.179 0.015 89.4
    8 1.897 0.158 0.275 0.023 85.6
    9 1.938 0.215 0.303 0.034 84.4
    10 2.035 0.226 0.289 0.032 85.8
    下载: 导出CSV
  • [1]

    Zhong K J, Gao Y Q, Li F, et al. Fabrication of continuous relief micro-optic elements using real-time maskless lithography technique based on DMD[J]. Optics & Laser Technology, 2014, 56: 367–371. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=25505f4f096637ff450442480db5ddea

    [2]

    刘文辉.光刻技术及其应用的状况和未来发展[J].电子工业专用设备, 2006, 36(3): 36–42. doi: 10.3969/j.issn.1004-4507.2006.03.011

    Liu W H. The status and future of lithography and it's application[J]. Equipment for Electronic Products Manufacturing, 2006, 36(3): 36–42. doi: 10.3969/j.issn.1004-4507.2006.03.011

    [3]

    姚汉民, 胡松, 邢廷文.光学投影曝光微纳加工技术[M].北京:北京工业大学出版社, 2006: 9–13.

    [4]

    Feather G A, Monk D W. The digital micromirror device for projection display[C]//Proceedings IEEE International Conference on Wafer Scale Integration (ICWSI), San Francisco, 1995, 27: 43–51.https://www.researchgate.net/publication/3645984_Digital_micromirror_device_for_projection_display

    [5]

    蒋文波, 胡松.无掩模光刻技术研究[J].微细加工技术, 2008(4): 1–3, 64. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wxjgjs200804001

    Jiang W B, Hu S. Study on maskless lithography technology[J]. Microfabrication Technology, 2008(4): 1–3, 64. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wxjgjs200804001

    [6]

    Sampsell J B. An overview of the digital micromirror device (DMD) and its application to projection displays[J]. Society for Information Display International Symposium Digest, 1993: 24. https://www.researchgate.net/publication/285443356_An_overview_of_the_digital_micromirror_device_DMD_and_its_application_to_projection_displays

    [7]

    邹朋飞.基于DMD无掩模数字光刻机的研究与设计[D].南京: 南京大学, 2017.

    Zou P F. Research and design of maskless digital lithography based on DMD[D]. Nanjing: Nanjing University, 2017.http://cdmd.cnki.com.cn/Article/CDMD-10284-1017145501.htm

    [8]

    熊峥.基于DMD的数字光刻技术研究[D].长春: 中国科学院大学, 2016.

    Xiong Z. Research on DMD-based digital photolithography[D]. Changchun: University of Chinese Academy of Sciences, 2016.http://cdmd.cnki.com.cn/Article/CDMD-80139-1016179011.htm

    [9]

    陈荣环.基于DMD的扫描光刻系统图案生成质量优化方案的研究[D].长春: 东北师范大学, 2018.

    Chen R H. Research on optimization scheme of generation quality of patterns in scanning lithography system based on DMD[D]. Changchun: Northeast Normal University, 2018.http://cdmd.cnki.com.cn/Article/CDMD-10200-1018707113.htm

    [10]

    吴皓. DMD投影光刻系统的开发设计及其在光刻、液晶光控取向方面的应用[D].南京: 南京大学, 2012.

    Wu H. Development of DMD-based micro-lithography system and adapted to photo-patterning in liquid crystal alignments[D]. Nanjing: Nanjing University, 2012.http://cdmd.cnki.com.cn/Article/CDMD-10284-1014165735.htm

    [11]

    武洋.无掩模光刻技术及其曝光方案研究[D].西安: 西安电子科技大学, 2017.

    Wu Y. Research on maskless lithography technology and exposure method[D]. Xi'an: Xidian University, 2017.http://cdmd.cnki.com.cn/Article/CDMD-10701-1018000589.htm

    [12]

    王亚飞.数字无掩膜光刻技术及其大面积曝光方案研究[D].西安: 西安电子科技大学, 2015.

    Wang Y F. Study of digital maskless lithography technology and large area exposure method[D]. Xi'an: Xidian University, 2015.http://cdmd.cnki.com.cn/Article/CDMD-10701-1016245603.htm

  • 加载中

(9)

(1)

计量
  • 文章访问数:  8049
  • PDF下载数:  2227
  • 施引文献:  0
出版历程
收稿日期:  2019-07-05
修回日期:  2019-08-15
刊出日期:  2020-06-01

目录

/

返回文章
返回