New website getting online, testing
    • 摘要: 本文利用材料热膨胀系数不同的性质设计了一种可以对小面积热源进行高灵敏检测的温度传感器。该传感器的温度敏感元件是一个上表面镀有金属的氮化硅悬臂梁。由于金属与氮化硅的热膨胀系数不同,因此当悬臂梁所在的环境温度发生变化时,悬臂梁会向温度梯度变化快的方向发生弯曲,并且弯曲量与温度成正相关关系。实验中通过光杠杆测量梁的弯曲量,用标定的方式建立温度与探测器输出电压之间的关系。结果显示,该传感器的灵敏度可以达到4.86 mV/℃,以及0.04 ℃的温度分辨力。为验证传感器对小面积热源进行测量的适用性,我们利用NaYF4材料受激发热的性质,对不同面积热源产生的热量进行测量。结果显示,当发热面积约为0.07 mm2时依然可以进行准确测量,实现了对小面积热源温度进行精确测量的目的。

       

      Abstract: In this paper, a kind of temperature sensor which can detect a small-area heat source with high sensitivity is designed by using the property of different thermal expansion coefficients of materials. The temperature sensitive element of the sensor is a silicon nitride cantilever beam which is coated with metal on its upper surface. Due to the difference of thermal expansion coefficients between the metal and silicon nitride, the cantilever beam will bend in the direction of rapid change of the temperature gradient, and the bending amount will be positively correlated with the temperature when the ambient temperature of the cantilever beam changes. In the experiment, the bending amount of the beam is measured by the optical lever, and the relationship between the temperature and the output voltage of the detector is established by calibration. The results show that the sensitivity of the sensor can reach 4.86 mV/℃ and the temperature resolution can reach 0.04 ℃. In order to verify the applicability of the sensor for measuring the small-area heat source, the heat generated by heat sources of different areas is measured depending on the calorific property of NaYF4 under laser excitation. The results show that it still can be measured even the heating area is only 0.07 mm2 and the accurate measurement for temperature of the small-area heat source can be realized.