太赫兹(THz)成像技术,因其具有能量低、透射率高、波谱范围宽等独特的分析能力,已经在生物医学、安全检查、航空航天等领域展现出巨大的优势及潜在的应用价值,但是较低的空间分辨率制约了太赫兹成像技术的进一步应用。太赫兹波通过具有适当折射率的介质结构产生的“太喷射”效应调控亚波长尺寸太赫兹光场,突破衍射极限对显微系统空间分辨率的限制,同时不损失光场能量和光谱信息,实现高通量、超宽谱的远场太赫兹高分辨成像。本文首先介绍基于纳米喷射的微球透镜显微技术,接着介绍基于太喷射的太赫兹显微技术,最后对基于喷射效应的太赫兹高分辨成像技术的前景做了展望。
基于喷射效应的太赫兹高分辨成像研究与进展
作者单位信息

出版日期:2020年5月1日
摘要
英文长摘要
参考文献
1 Mittleman D M. Twenty years of terahertz imaging [Invited][J]. Optics Express, 2018, 26(8): 9417-9431. DOI:10.1364/OE.26.009417
2 Tonouchi M. Cutting-edge terahertz technology[J]. Nature Photonics, 2007, 1(2): 97-105. DOI:10.1038/nphoton.2007.3
3 Adam A J L. Review of Near-Field Terahertz measurement methods and their applications[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2011, 32(8-9): 976-1019. DOI:10.1007/s10762-011-9809-2
4 Siday T, Natrella M, Wu J, et al. Resonant terahertz probes for near-field scattering microscopy[J]. Optics Express, 2017, 25(22): 27874-27885. DOI:10.1364/OE.25.027874
5 Zinov'ev N N, Andrianov A V, Gallant A J, et al. Contrast and resolution enhancement in a confocal terahertz video system[J]. JETP Letters, 2008, 88(8): 492-495. DOI:10.1134/S0021364008200058
6 Llombart N, Cooper K B, Dengler R J, et al. Confocal ellipsoidal reflector system for a mechanically scanned active terahertz imager[J]. IEEE Transactions on Antennas and Propagation, 2010, 58(6): 1834-1841. DOI:10.1109/TAP.2010.2046860
7 Balbekin N S, Kulya M S, Belashov A V, et al. Increasing the resolution of the reconstructed image in terahertz pulse time-domain holography[J]. Scientific Reports, 2019, 9: 180. DOI:10.1038/s41598-018-36642-3
8 Liu T, Pi Y M, Yang X. Wide-angle CSAR imaging based on the adaptive subaperture partition method in the terahertz band[J]. IEEE Transactions on Terahertz Science and Technology, 2018, 8(2): 165-173. DOI:10.1109/TTHZ.2017.2781462
9 Ding S H, Li Q, Yao R, et al. High-resolution terahertz reflective imaging and image restoration[J]. Applied Optics, 2010, 49(36): 6834-6839. DOI:10.1364/AO.49.006834
11 Mitrofanov O, Brener I, Wanke M C, et al. Near-field microscope probe for far infrared time domain measurements[J]. Applied Physics Letters, 2000, 77(4): 591-593. DOI:10.1063/1.127054
12 Chen Q, Zhang X C. Semiconductor dynamic aperture for near-field terahertz wave imaging[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2001, 7(4): 608-614. DOI:10.1109/2944.974232
13 Mitrofanov O, Brener I, Harel R, et al. Terahertz near-field microscopy based on a collection mode detector[J]. Applied Physics Letters, 2000, 77(22): 3496-3498. DOI:10.1063/1.1328772
14 Chen H T, Kersting R, Cho G C. Terahertz imaging with nanometer resolution[J]. Applied Physics Letters, 2003, 83(15): 3009-3011. DOI:10.1063/1.1616668
15 van der Valk N C J, Planken P C M. Electro-optic detection of subwavelength terahertz spot sizes in the near field of a metal tip[J]. Applied Physics Letters, 2002, 81(9): 1558-1560. DOI:10.1063/1.1503404
16 Moon K, Park H, Kim J, et al. Subsurface nanoimaging by broadband terahertz pulse near-field microscopy[J]. Nano Letters, 2015, 15(1): 549-552. DOI:10.1021/nl503998v
17 Klarskov P, Kim H, Colvin V L, et al. Nanoscale laser terahertz emission microscopy[J]. ACS Photonics, 2017, 4(11): 2676-2680. DOI:10.1021/acsphotonics.7b00870
18 Kiwa T, Tonouchi M, Yamashita M, et al. Laser terahertz-emission microscope for inspecting electrical faults in integrated circuits[J]. Optics Letters, 2003, 28(21): 2058-2060. DOI:10.1364/OL.28.002058
19 Yamashita M, Kawase K, Otani C, et al. Imaging of large-scale integrated circuits using laser terahertz emission microscopy[J]. Optics Express, 2005, 13(1): 115-120. DOI:10.1364/OPEX.13.000115
20 Yang Y P, Yan W, Li W. A reflected terahertz-emission microscopy[J]. Chinese Physics Letters, 2007, 24(1): 169-171. DOI:10.1088/0256-307X/24/1/046
21 Yang Y P, Shi Y L, Yan W, et al. A new microscopy for THz radiation[J]. Acta Physica Sinica, 2005, 54(9): 4079-4083. DOI:10.3321/j.issn:1000-3290.2005.09.021
杨玉平, 施宇蕾, 严伟, 等.一种新型THz显微探测技术[J], 物理学报, 2005, 54(9): 4079-4083. DOI:10.3321/j.issn:1000-3290.2005.09.021
22 Zhao J Y, Chu W, Guo L J, et al. Terahertz imaging with sub-wavelength resolution by femtosecond laser filament in air[J]. Scientific Reports, 2015, 4: 3880. DOI:10.1038/srep03880
23 Ishihara K, Ohashi K, Ikari T, et al. Terahertz-wave near-field imaging with subwavelength resolution using surface-wave-assisted bow-tie aperture[J]. Applied Physics Letters, 2006, 89(20): 201120. DOI:10.1063/1.2387984
24 Chen H, Ma S H, Wu X M, et al. Diagnose human colonic tissues by terahertz near-field imaging[J]. Journal of Biomedical Optics, 2015, 20(3): 036017. DOI:10.1117/1.JBO.20.3.036017
25 Xu Y H, Zhang X Q, Tian Z, et al. Mapping the near-field propagation of surface plasmons on terahertz metasurfaces[J]. Applied Physics Letters, 2015, 107(2): 021105. DOI:10.1063/1.4926967
26 Chen S C, Du L H, Meng K, et al. Terahertz wave near-field compressive imaging with a spatial resolution of over λ/100[J]. Optics Letters, 2019, 44(1): 21-24. DOI:10.1364/OL.44.000021
27 Wang Z B, Guo W, Li L, et al. Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope[J]. Nature Communications, 2011, 2: 218. DOI:10.1038/ncomms1211
28 Pacheco-Peña V, Beruete M, Minin I V, et al. Terajets produced by dielectric cuboids[J]. Applied Physics Letters, 2014, 105(8): 084102. DOI:10.1063/1.4894243
29 Yang Y P, Liu H L, Yang M H, et al. Dielectric sphere-coupled THz super-resolution imaging[J]. Applied Physics Letters, 2018, 113(3): 031105. DOI:10.1063/1.5026758
30 Hao X, Kuang C F, Liu X, et al. Microsphere based microscope with optical super-resolution capability[J]. Applied Physics Letters, 2011, 99(20): 203102. DOI:10.1063/1.3662010
31 Darafsheh A, Walsh G F, Negro L D, et al. Optical super-resolution by high-index liquid-immersed microspheres[J]. Applied Physics Letters, 2012, 101(14): 141128. DOI:10.1063/1.4757600
32 Lee S, Li L, Ben-Aryeh Y, et al. Overcoming the diffraction limit induced by microsphere optical nanoscopy[J]. Journal of Optics, 2013, 15(12): 125710. DOI:10.1088/2040-8978/15/12/125710
34 Yang H, Moullan N, Auwerx J, et al. Fluorescence imaging: super-resolution biological microscopy using virtual imaging by a microsphere nanoscope [J]. Small, 2014, 10(9): 1876. DOI:10.1002/smll.201470055
35 Wang F, Yang S, Ma H, et al. Microsphere-assisted super-resolution imaging with enlarged numerical aperture by semi-immersion [J]. Applied Physics Letters, 2018, 112:023101. DOI:10.1063/1.5011067
36 Yan Y Z, Li L, Feng C, et al. Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum[J]. ACS Nano, 2014, 8(2): 1809-1816. DOI:10.1021/nn406201q
37 Li P Y, Tsao Y, Liu Y J, et al. Unusual imaging properties of superresolution microspheres[J]. Optics Express, 2016, 24(15): 16479-16486. DOI:10.1364/OE.24.016479
38 Yang H, Trouillon R, Huszka G, et al. Super-resolution imaging of a dielectric microsphere is governed by the waist of its photonic nanojet[J]. Nano Letters, 2016, 16(8): 4862-4870. DOI:10.1021/acs.nanolett.6b01255
39 Chen Z G, Taflove A, Backman V. Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique[J]. Optics Express, 2004, 12(7): 1214-1220. DOI:10.1364/OPEX.12.001214
40 Shen Y C, Wang L V, Shen J T. Ultralong photonic nanojet formed by a two-layer dielectric microsphere[J]. Optics Letters, 2014, 39(14): 4120-4123. DOI:10.1364/OL.39.004120
41 Ben-Aryeh Y. Nano-jet related to Bessel beams and to super-resolutions in microsphere optical experiments[J]. EPJ Techniques and Instrumentation, 2017, 4: 3. DOI:10.1140/epjti/s40485-017-0038-5
42 Pacheco-Peña V, Beruete M, Minin I V, et al. Multifrequency focusing and wide angular scanning of terajets[J]. Optics Letters, 2015, 40(2): 245-248. DOI:10.1364/OL.40.000245
43 Pham H H N, Hisatake S, Minin I V, et al. Three-dimensional direct observation of Gouy phase shift in a terajet produced by a dielectric cuboid[J]. Applied Physics Letters, 2016, 108(19): 191102. DOI:10.1063/1.4949014
44 Pham H H N, Hisatake S, Minin O V, et al. Asymmetric phase anomaly of terajet generated from dielectric cube under oblique illumination[J]. Applied Physics Letters, 2017, 110(20): 201105. DOI:10.1063/1.4983640
45 Pham H H N, Hisatake S, Minin O V, et al. Enhancement of spatial resolution of terahertz imaging systems based on terajet generation by dielectric cube[J]. APL Photonics, 2017, 2(5): 056106. DOI:10.1063/1.4983114
46 Minin I V, Minin O V, Pacheco-Peña V, et al. All-dielectric periodic terajet waveguide using an array of coupled cuboids[J]. Applied Physics Letters, 2015, 106(25): 254102. DOI:10.1063/1.4923186
47 Minin I V, Minin O V, Pacheco-Peña V, et al. Localized photonic jets from flat, three-dimensional dielectric cuboids in the reflection mode[J]. Optics Letters, 2015, 40(10): 2329-2332. DOI:10.1364/OL.40.002329
48 Yue L Y, Yan B, Monks J N, et al. A millimetre-wave cuboid solid immersion lens with intensity-enhanced amplitude mask apodization[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2018, 39(6): 546-552. DOI:10.1007/s10762-018-0479-1
50 Minin I V, Minin O V. Terahertz artificial dielectric cuboid lens on substrate for super-resolution images[J]. Optical and Quantum Electronics, 2017, 49(10): 326. DOI:10.1007/s11082-017-1165-6
53 Zhang Z W, Zhang H Y, Wang K J. Diffraction-free THz sheet and its application on THz imaging system[J]. IEEE Transactions on Terahertz Science and Technology, 2019, 9(5): 471-475. DOI:10.1109/TTHZ.2019.2926630
54 Yang Z C, Qu Q S, Yang M H, et al. Propagation characteristics of high-throughput terajet beam and its super Resolution THz imaging[C]//Proceedings of 2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), 2019: 1-2.
55 Qu Q S, Liu H L, Zhu D, et al. Terajet effect of dielectric sphere and THz imaging[J]. Proceedings of SPIE, 2018, 10826: 1082606.
56 Chernomyrdin N V, Frolov M E, Lebedev S P, et al. Wide-aperture aspherical lens for high-resolution terahertz imaging[J]. Review of Scientific Instruments, 2017, 88(1): 014703. DOI:10.1063/1.4973764
基金项目:
国家自然科学基金资助项目(11574408);国家重点研发计划(2017YFB00405400);国家民委“中青年英才”培养计划(2016-03-02);中央民族大学大学生创新性实验计划(URTP2019110002)
导出参考文献,格式为:
引用本文:
马晓茗, 姜在超, 屈庆山, 等. 基于喷射效应的太赫兹高分辨成像研究与进展[J]. 光电工程, 2020, 47(5): 190590.
上一篇:连续太赫兹波数字全息相衬成像
下一篇:太赫兹成像技术在肿瘤检测中的应用