涡旋光束通过非高斯随机粗糙面的场分布特性

吕宏,任程程,刘旭东,等. 涡旋光束通过非高斯随机粗糙面的场分布特性[J]. 光电工程,2020,47(3):190477. doi: 10.12086/oee.2020.190477
引用本文: 吕宏,任程程,刘旭东,等. 涡旋光束通过非高斯随机粗糙面的场分布特性[J]. 光电工程,2020,47(3):190477. doi: 10.12086/oee.2020.190477
Lv H, Ren C C, Liu X D, et al. Field distribution characteristics of vortex beams passing through the non-Gaussian random rough surface[J]. Opto-Electron Eng, 2020, 47(3): 190477. doi: 10.12086/oee.2020.190477
Citation: Lv H, Ren C C, Liu X D, et al. Field distribution characteristics of vortex beams passing through the non-Gaussian random rough surface[J]. Opto-Electron Eng, 2020, 47(3): 190477. doi: 10.12086/oee.2020.190477

涡旋光束通过非高斯随机粗糙面的场分布特性

  • 基金项目:
    陕西省自然科学基础研究计划资助项目(2019JM-470);陕西省教育厅科研计划资助项目(18JS048)
详细信息
    作者简介:
    通讯作者: 刘旭东(1993–),男,硕士研究生,主要从事激光传输及遥感探测的研究。E-mail:xdliu1@qq.com
  • 中图分类号: O437; TN929.1

Field distribution characteristics of vortex beams passing through the non-Gaussian random rough surface

  • Fund Project: Supported by the Natural Science Basic Research Program of Shaanxi (2019JM-470) and the Scientific Research Program Funded by Shaanxi Provincial Education Department (18JS048)
More Information
  • 基于角谱衍射理论,利用Johnson传递系统数值模拟非高斯粗糙面,研究了拉盖尔-高斯涡旋光束通过随机非高斯粗糙表面的场分布特性。在分析了非高斯粗糙面方向自相关长度、峰度、偏斜以及均方根粗糙度对涡旋光束场分布影响的基础上,研究了涡旋光束通过随机粗糙表面后光束光强分布变化时的均方根粗糙度取值范围,并通过实验,将实验数据与仿真结果进行了对比分析。结果表明:当非高斯粗糙面方向相关长度为20 mm,偏斜为0.001,峰度为6,均方根粗糙度大于0.12 mm时,拉盖尔-高斯光束透过随机表面的光强分布不再保持空心分布,对应的相位奇点消失。


  • Overview: In recent years, vortex beams have gradually become a research focus of information optics, due to its wide range of application prospects in micro particle control, optical communication, quantum spiral imaging, and remote sensing detection etc. When the laser beam incident on the rough surface, many flickering spots are appearing, which are called laser speckle. Speckle is a common phenomenon in the field of optics. The formation of speckle is due to the interference between multiple scattered light beams after multiple scattering in inhomogeneous medium. Through the study of speckle field, the information of scattering medium and beam can be reflected. At present, the research on the speckle field of vortex beam is mostly based on the speckle theory to analyze the characteristics of speckle. However, the field distribution and dark hollow singularity of vortex beam passing through random rough surface are changed, and the influence of parameters of rough surface on the intensity distribution of vortex beam is rarely reported. In addition, in the laboratory, the partially coherent vortex beam is usually generated by vortex beam after passing through the rotating ground glass with a random surface. In some practical applications, the intensity distribution of the beam needs to be reshaped to obtain the intensity distribution with a special shape. Therefore, the research on the intensity distribution of the vortex beam passing through the random surface is of great significance for the application of the vortex beam.

    Based on the theory of angular spectrum representation, the non-Gaussian rough surface is simulated by Johnson transfer system, and the field distribution characteristics of Laguerre-Gaussian vortex beams passing through the random non-Gaussian rough surface are studied. The effects of the direction correlation length, kurtosis, skewness and root mean square roughness of non-Gaussian rough surface on the field distribution of the vortex beam are analyzed. The range of the root mean square roughness is studied when the intensity distribution of the vortex beam passing through the random rough surface changes, and the corresponding experiment is carried out. The experimental data are compared with the simulation results. The results show that when the direction correlation length of non-Gaussian rough surface is 20 mm, the skewness is 0.001, the kurtosis is 6, and the root mean square roughness is more than 0.12 mm, the intensity distribution of the Laguerre-Gaussian beam passing through the random surface no longer keeps the hollow distribution, and the corresponding phase singularity disappears.

  • 加载中
  • 图 1  非高斯粗糙面

    Figure 1.  Non-Gaussian roughness surface

    图 2  不同拓扑荷数拉盖尔-高斯光束通过随机粗糙表面传输不同距离的光强分布

    Figure 2.  Intensity distributions of Laguerre-Gauss beams with different topological charges after passing through the random rough surfaces at different distances

    图 3  拉盖尔-高斯光束透过不同方向相关长度随机粗糙表面光强分布

    Figure 3.  Intensity distributions of Laguerre-Gauss beams after passing through the random rough surfaces with different direction correlation lengths

    图 4  拉盖尔-高斯光束透过不同峰度随机粗糙面光强分布

    Figure 4.  Intensity distributions of Laguerre-Gauss beams after passing through the random rough surfaces with different kurtosis

    图 5  拉盖尔-高斯光束透过不同偏斜随机粗糙面光强分布

    Figure 5.  Intensity distributions of Laguerre-Gauss beams after passing through the random rough surfaces with different skewness

    图 6  拉盖尔-高斯光束透过不同均方根粗糙度随机表面光强分布

    Figure 6.  Intensity distributions of Laguerre-Gauss beams after passing through the random rough surfaces with different root mean square roughness

    图 7  非高斯粗糙表面均方根粗糙度对透过随机表面光强分布的影响

    Figure 7.  Effects of root mean square roughness on intensity distributions of Laguerre-Gauss beams after passing through the random rough surfaces

    图 8  非高斯随机表面对涡旋光束光强分布影响的实验装置示意图

    Figure 8.  Experimental set-up of the vortex beam passing through the GGD

    图 9  不同拓扑荷值涡旋光束透过不同目数毛玻璃片的光强分布图

    Figure 9.  Intensity distributions of vortex beams with different topological charges after passing through the GGD with different grits

  • [1]

    Leach J, Yao E, Padgett M J. Observation of the vortex structure of a non-integer vortex beam[J]. New Journal of Physics, 2004, 6: 71. doi: 10.1088/1367-2630/6/1/071

    [2]

    丁攀峰.整数与分数阶涡旋光束相位奇点的稳定性分析[J].华中科技大学学报(自然科学版), 2011, 39(5): 118–122. http://www.cnki.com.cn/Article/CJFDTotal-HZLG201105033.htm

    Ding P F. Stabilization analysis of phase singularity of vortex beams with integral and fractional orders[J]. Journal of Huazhong University of Science and Technology (Nature Science Edition), 2011, 39(5): 118–122. http://www.cnki.com.cn/Article/CJFDTotal-HZLG201105033.htm

    [3]

    柯熙政, 李亚星.分数阶拉盖尔高斯光束轨道角动量的实验研究[J].激光与光电子学进展, 2015, 52(8): 080501. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgygdzxjz201508011

    Ke X Z, Li Y X. Experimental study on fractional Laguerre Gaussian beam with orbital angular momentum[J]. Laser & Optoelectronics Progress, 2015, 52(8): 080501. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgygdzxjz201508011

    [4]

    Lavery M P J, Speirits F C, Barnett S M, et al. Detection of a spinning object using light's orbital angular momentum[J]. Science, 2013, 341(6145): 537–540. doi: 10.1126/science.1239936

    [5]

    Fraine A, Uribe-Patarroyo N, Simon D S, et al. Object identification using correlated orbital angular momentum states[C]//Proceedings of CLEO: Science and Innovations 2013, San Jose, 2014: 1–2.

    [6]

    Ke X Z, Zhao J. Analysis on characteristic of Laguerre-Gaussian beams with topological charges of arithmetic progression[J]. Optik, 2019, 183: 302–310. doi: 10.1016/j.ijleo.2019.02.006

    [7]

    Hall M, Courteau S, Dutton A A, et al. An investigation of Sloan Digital Sky Survey imaging data and multiband scaling relations of spiral galaxies[J]. Monthly Notices of the Royal Astronomical Society, 2015, 425(4): 2741–2765. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1111/j.1365-2966.2012.21290.x

    [8]

    袁小聪.光学旋涡光场调控与应用[J].光学与光电技术, 2016, 14(6): 13–16. http://d.old.wanfangdata.com.cn/Periodical/gxygdjs201606004

    Yuan X C. Optical vortex field manipulation and applications[J]. Optics & Optoelectronic Technology, 2016, 14(6): 13–16. http://d.old.wanfangdata.com.cn/Periodical/gxygdjs201606004

    [9]

    Liu H Q. Optical spanner based on the transfer of spin angular momentum of light in semiconductors[J]. Optics Communications, 2015, 342: 125–128. doi: 10.1016/j.optcom.2014.12.064

    [10]

    袁小聪, 贾平, 雷霆, 等.光学旋涡与轨道角动量光通信[J].深圳大学学报理工版, 2014, 31(4): 331–346. http://d.old.wanfangdata.com.cn/Periodical/szdxxb201404001

    Yuan X C, Jia P, Lei T, et al. Optical vortices and optical communication with orbital angular momentum[J]. Journal of Shenzhen University Science and Engineering, 2014, 31(4): 331–346. http://d.old.wanfangdata.com.cn/Periodical/szdxxb201404001

    [11]

    Zhao C L, Dong Y, Wang Y M, et al. Experimental generation of a partially coherent Laguerre–Gaussian beam[J]. Applied Physics B, 2012, 109(2): 345–349. doi: 10.1007/s00340-012-5209-0

    [12]

    Wang F, Liu X L, Yuan Y S, et al. Experimental generation of partially coherent beams with different complex degrees of coherence[J]. Optics Letters, 2013, 38(11): 1814–1816. doi: 10.1364/OL.38.001814

    [13]

    Cai Y J, Chen Y H, Wang F. Generation and propagation of partially coherent beams with nonconventional correlation functions: a review[Invited][J]. Journal of the Optical Society of America A, 2014, 31(9): 2083–2096. doi: 10.1364/JOSAA.31.002083

    [14]

    Zhao C L, Cai Y J, Lu X H, et al. Radiation force of coherent and partially coherent flat-topped beams on a Rayleigh particle[J]. Optics Express, 2009, 17(3): 1753–1765. doi: 10.1364/OE.17.001753

    [15]

    Reddy S G, Prabhakar S, Kumar A, et al. Higher order optical vortices and formation of speckles[J]. Optics Letters, 2014, 39(15): 4364–4367. doi: 10.1364/OL.39.004364

    [16]

    Passos M H M, Lemos M R, Almeida S R, et al. Speckle patterns produced by an optical vortex and its application to surface roughness measurements[J]. Applied Optics, 2017, 56(2): 330–335. doi: 10.1364/AO.56.000330

    [17]

    Vinu R V, Singh R K. Determining helicity and topological structure of coherent vortex beam from laser speckle[J]. Applied Physics Letters, 2016, 109(11): 111108. doi: 10.1063/1.4962952

    [18]

    Salla G R, Perumangattu C, Prabhakar S, et al. Recovering the vorticity of a light beam after scattering[J]. Applied Physics Letters, 2015, 107(2): 021104. doi: 10.1063/1.4926913

    [19]

    田兆硕, 王骐.高斯激光束散斑现象的数值模拟[C]//大珩先生九十华诞文集暨中国光学学会2004年学术大会论文集.杭州, 2004: 4.

    Tian Z S, Wang Q. Numerical simulation on speckle for gauss laser beam[C]//Proceedings of SPIE. Hangzhou, 2004: 4.

    [20]

    刘曼.涡旋光束形成的散斑场光强和相位的分布特性[J].光学学报, 2014, 34(11): 1126001. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201411043

    Liu M. Distribution properties of intensity and phase of speckle fields produced by vortex beam[J]. Acta Optica Sinica, 2014, 34(11): 1126001. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201411043

    [21]

    李新忠, 田晓敏, 王辉, 等.拉盖尔-高斯光束照射产生散斑场的特性研究[J].光学学报, 2015, 35(7): 0726001. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201507042

    Li X Z, Tian X M, Wang H, et al. Study on properties of speckle field formed by Laguerre-Gaussian beam illumination[J]. Acta Optica Sinica, 2015, 35(7): 0726001. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201507042

    [22]

    刘绩林, 黄惠玲, 陈子阳, 等.涡旋光束经过散射介质产生散斑的理论和实验研究[J].光电子·激光, 2015, 26(8): 1626–1632. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdzjg201508028

    Liu J L, Huang H L, Chen Z Y, et al. Investigation on the speckle produced by vortex beams through a scattering medium[J]. Journal of Optoelectronics·Laser, 2015, 26(8): 1626–1632. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdzjg201508028

    [23]

    施丽, 李静, 陶陶.利用计算全息产生的拉盖尔-高斯光束旋转微粒[J].激光与红外, 2012, 42(11): 1226–1229. doi: 10.3969/j.issn.1001-5078.2012.11.005

    Shi L, Li J, Tao T. Micro-particles' rotation by Laguerre-Gaussian beams produced by computer-generated holograms[J]. Laser & Infrared, 2012, 42(11): 1226–1229. doi: 10.3969/j.issn.1001-5078.2012.11.005

    [24]

    李俊昌, 熊秉衡.信息光学理论与计算[M].北京:科学出版社, 2009.

    Li J C, Xiong B H. Theory and Calculation of Information Optics[M]. Beijing: Science Press, 2009.

    [25]

    陈辉, 胡元中, 王慧, 等.粗糙表面计算机模拟[J].润滑与密封, 2006(10): 52–55, 59. doi: 10.3969/j.issn.0254-0150.2006.10.016

    Chen H, Hu Y Z, Wang H, et al. Computer simulation of rough surfaces[J]. Lubrication Engineering, 2006(10): 52–55, 59. doi: 10.3969/j.issn.0254-0150.2006.10.016

    [26]

    Bakolas V. Numerical generation of arbitrarily oriented non-Gaussian three-dimensional rough surfaces[J]. Wear, 2003, 254(5–6): 546–554. doi: 10.1016/S0043-1648(03)00133-9

    [27]

    Hill I D, Hill R, Holder R L. Algorithm AS 99: fitting Johnson curves by moments[J]. Applied Statistics, 1976, 25(2): 180–189. doi: 10.2307/2346692

  • 加载中

(9)

计量
  • 文章访问数:  7511
  • PDF下载数:  2307
  • 施引文献:  0
出版历程
收稿日期:  2019-08-13
修回日期:  2019-11-08
刊出日期:  2020-03-01

目录

/

返回文章
返回