光空间调制技术的研究进展

毛一聪,王惠琴,张悦,等. 光空间调制技术的研究进展[J]. 光电工程,2020,47(3):190712. doi: 10.12086/oee.2020.190712
引用本文: 毛一聪,王惠琴,张悦,等. 光空间调制技术的研究进展[J]. 光电工程,2020,47(3):190712. doi: 10.12086/oee.2020.190712
Mao Y C, Wang H Q, Zhang Y, et al. Research status and development of optical spatial modulation technology[J]. Opto-Electron Eng, 2020, 47(3): 190712. doi: 10.12086/oee.2020.190712
Citation: Mao Y C, Wang H Q, Zhang Y, et al. Research status and development of optical spatial modulation technology[J]. Opto-Electron Eng, 2020, 47(3): 190712. doi: 10.12086/oee.2020.190712

光空间调制技术的研究进展

  • 基金项目:
    国家自然科学基金资助项目(61861026, 61875080)
详细信息
    作者简介:
    通讯作者: 王惠琴(1971-),女,博士,教授,博士生导师,主要从事无线光通信MIMO技术方面的研究。E-mail:whq1222@lut.cn
  • 中图分类号: TN929.12

Research status and development of optical spatial modulation technology

  • Fund Project: Supported by National Natural Science Foundation of China (61861026, 61875080)
More Information
  • 光空间调制(OSM)作为一种新型的光多输入多输出(OMIMO)技术,利用空间域激光器索引号额外携带信息,有效地提高了系统的传输速率和能量效率; 同时,由于每符号周期仅激活一个激光器传递信息,较好地解决了传统OMIMO系统中的信道干扰和同步等问题。本文首先介绍了现有的几种光空间调制技术,概括和总结其在国内外的研究现状。此外,从传输速率、频谱效率、误码率(BER)和计算复杂度等四个方面对现有的OSM、光空移键控(OSSK)、增强型光空间调制(EOSM)和差分光空间调制(DOSM)等方案进行了比较分析。最后,指出了OSM中亟需解决的关键性问题及其未来的发展方向。

  • Overview: As a novel access network technology, wireless optical communication (WOC) has sparked great interests in the field. Compared with RF, there are significant advantages, such as high bandwidth, inherent security and ease of installation. However, the channel fading caused by atmospheric turbulence and complex channel environment is the main factor affecting the performance of WOC system. Therefore, OMIMO system comes into being and makes use of spatial diversity at receiver and transmitter to overcome the performance influence caused by link fading. When multiple lasers are activated simultaneously, the problems of inter-channel interference (ICI) and inter antenna synchronization (IAS) limit the promotion and development of OMIMO system. Optical spatial modulation (OSM) is a novel OMIMO scheme which conveys information over both signal and space simultaneously. OSM effectively improves the transmission rate and energy efficiency by using the spatial domain laser index to carry additional information. Since only one laser is activated per symbol duration to transmit information, the problems of channel interference and synchronization are solved in traditional OMIMO system, and complexity and link cost of proposed OSM scheme are decreased. Based on the above advantages, OSM is an OMIMO technology with broad development prospects and can be applied in various occasions. In the field of RF, the idea of SM has been developed rapidly and rich research results have been obtained. Compared with RF field, OSM is still in the exploration stage. In this paper, we introduce four kinds of schemes of OSM, optical space shift keying (OSSK), enhanced optical spatial modulation (EOSM) and differential optical spatial modulation (DOSM) from basic principle to research status both at home and abroad. OSSK is a simple form of OSM, which only uses the index of the laser to transmit information. EOSM effectively increases the transmission rate by activating a small number of lasers. And EOSM overcomes in a novel fashion the constraint in OSM that the number of lasers has to be a power of two. DOSM can effectively avoid complex channel estimation and obtain better performance under high mobility scenarios. In terms of transmission rate, spectral efficiency, bit error rate (BER) and complexity, four kinds of OSM scheme are compared and analyzed. It is noticed from analysis that different OSM schemes have their own characteristics and advantages, so they are selected according to the specific situation in practical application. In short, with the requirement of high capacity and high-speed communication system, OSM scheme is expected to be an alternative to next generation communications technology. It has significant application prospect in the future for massive MIMO user and multi-user multi-cell MIMO communication.

  • 加载中
  • 图 1  OSM系统模型

    Figure 1.  OSM system model

    图 2  GOSM系统模型

    Figure 2.  GOSM system model

    图 3  DOSM系统模型

    Figure 3.  DOSM system model

    图 4  不同光空间调制系统性能对比。

    Figure 4.  Performance comparison of different OSM systems.

    图 5  不同的S.I.下不同OSM系统误码率性能对比

    Figure 5.  Performance comparison of different OSM systems under different S.I.

    表 1  不同光空间调制方案的传输速率、频谱效率和复杂度

    Table 1.  Transmission rate、spectral efficiency and complexity of different OSM schemes

    调制方案 传输速率/(bpcu) 频谱效率/((bit/s)/Hz) 计算复杂度
    OSSK ${\log _2}{N_{\rm{t}}} $ ${\log _2}{N_{\rm{t}}} $ $ {N_{\rm{t}}}(2{N_{\rm{t}}}{N_{\rm{r}}} + 2{N_{\rm{r}}} - 1)$
    (L, M)-SPPAM ${\log _2}{N_{\rm{t}}} + {\log _2}LM $ ${\log _2}(LM{N_{\rm{t}}})/L $ ${N_{\rm{t}}}LM{\rm{(2}}{N_{\rm{t}}}L{N_{\rm{r}}}{\rm{ + 2}}{N_{\rm{r}}}L - 1{\rm{)}} $
    L-SPPM $ {\log _2}{N_{\rm{t}}} + {\log _2}L$ $ {{{{\log }_2}(L{N_{\rm{t}}})} \mathord{\left/ {\vphantom {{{{\log }_2}(L{N_{\rm{t}}})} L}} \right. } L}$ ${N_{\rm{t}}}L{\rm{(2}}{N_{\rm{t}}}L{N_{\rm{r}}}{\rm{ + 2}}{N_{\rm{r}}}L - 1{\rm{)}} $
    L-GSPPM $\left\lfloor {{{\log }_2}C_{{N_{\rm{t}}}}^2} \right\rfloor + 2{\log _2}L $ $ {{{{\log }_2}(C_{{N_{\rm{t}}}}^2{L^2})} \mathord{\left/ {\vphantom {{{{\log }_2}(C_{{N_{\rm{t}}}}^2{L^2})} L}} \right. } L}$ $ \left\lfloor {{{\log }_2}C_{{N_{\rm{t}}}}^2} \right\rfloor \cdot {L^2} \cdot {\rm{(2}}{N_{\rm{t}}}L{N_{\rm{r}}}{\rm{ + 2}}{N_{\rm{r}}}L{\rm{ + }}{N_{\rm{t}}}L - 1{\rm{)}}$
    DOSM-PAM $ \left\lfloor {{{\log }_2}\left( {{N_{\rm{t}}}!} \right)} \right\rfloor + {\log _2}M$ $ {{(\left\lfloor {{{\log }_2}({N_{\rm{t}}}!)} \right\rfloor + {{\log }_2}M)} \mathord{\left/ {\vphantom {{(\left\lfloor {{{\log }_2}({N_{\rm{t}}}!)} \right\rfloor + {{\log }_2}M)} {{N_{\rm{t}}}}}} \right. } {{N_{\rm{t}}}}}$ $ {2^{\left\lfloor {{{\log }_2}({N_{\rm{t}}}!)} \right\rfloor }}M{\rm{(3}}{N_{\rm{t}}}^2{N_{\rm{r}}}{\rm{ + 3}}{N_{\rm{t}}}{N_{\rm{r}}} - 1{\rm{)}}$
    DOSSK $ \left\lfloor {{{\log }_2}\left( {{N_{\rm{t}}}!} \right)} \right\rfloor $ $ {{\left\lfloor {{{\log }_2}({N_{\rm{t}}}!)} \right\rfloor } \mathord{\left/ {\vphantom {{\left\lfloor {{{\log }_2}({N_{\rm{t}}}!)} \right\rfloor } {{N_{\rm{t}}}}}} \right. } {{N_{\rm{t}}}}}$ ${2^{\left\lfloor {{{\log }_2}({N_{\rm{t}}}!)} \right\rfloor }}{\rm{(2}}{N_{\rm{t}}}^2{N_{\rm{r}}}{\rm{ + 3}}{N_{\rm{t}}}{N_{\rm{r}}} - 1{\rm{)}} $
    下载: 导出CSV
  • [1]

    El Mashade M B, Toeima A H. Performance characterization of spatial diversity based optical wireless communication over atmospheric turbulence channels[J]. Radioelectronics and Communications Systems, 2018, 61(4): 135-152. doi: 10.3103/S0735272718040015

    [2]

    Djordjevic I B, Denic S, Anguita J, et al. LDPC-Coded MIMO optical communication over the atmospheric turbulence channel[J]. Journal of Lightwave Technology, 2008, 26(5): 478-487. doi: 10.1109/JLT.2007.916514

    [3]

    Hajjarian Z, Fadlullah J, Kavehrad M. MIMO free space optical communications in turbid and turbulent atmosphere[J]. Journal of Communications, 2009, 4(8): 524-532. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_6997810e1ecfdfe3cb4f05daf83a6884

    [4]

    Wang H Q, Wang X, Lynette K, et al. Performance analysis of MIMO wireless optical communication system with Q-ary PPM over correlated log-normal fading channel[J]. Optics & Laser Technology, 2018, 102: 153-159. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e321b312bede065f00c2c84af95b40a1

    [5]

    Mesleh R, Mehmood R, Elgala H, et al. Indoor MIMO optical wireless communication using spatial modulation[C]// Proceedings of 2010 IEEE International Conference on Communications, 2010: 1-5.

    [6]

    虞湘宾, 邱赛男, 王丞.无线通信中空间调制MIMO技术的研究现状与展望[J].数据采集与处理, 2017, 32(3): 440-453. http://d.old.wanfangdata.com.cn/Periodical/sjcjycl201703002

    Yu X B, Qiu S N, Wang C. Research status and prospect for spatial modulated MIMO technique in wireless communications[J]. Journal of Data Acquisition & Processing, 2017, 32(3): 440-453. http://d.old.wanfangdata.com.cn/Periodical/sjcjycl201703002

    [7]

    Basar E, Wen M W, Mesleh R, et al. Index modulation techniques for next-generation wireless networks[J]. IEEE Access, 2017, 5: 16693-16746. doi: 10.1109/ACCESS.2017.2737528

    [8]

    Chau Y A, Yu S H. Space modulation on wireless fading channels[C]//IEEE 54th Vehicular Technology Conference. VTC Fall 2001. Proceedings (Cat. No.01CH37211), 2001: 1668-1671.

    [9]

    Freudenberger J, Rohweder D, Shavgulidze S. Generalized multistream spatial modulation with signal constellations based on Hurwitz integers and low-complexity detection[J]. IEEE Wireless Communications Letters, 2018, 7(3): 412-415. doi: 10.1109/LWC.2017.2780092

    [10]

    Qu W L, Zhang M, Cheng X, et al. Generalized spatial modulation with transmit antenna grouping for massive MIMO[J]. IEEE Access, 2017, 5: 26798-26807. doi: 10.1109/ACCESS.2017.2775281

    [11]

    Mesleh R, Haas H, Ahn C W, et al. Spatial modulation-a new low complexity spectral efficiency enhancing technique[C]// Proceedings of 2006 First International Conference on Communications and Networking in China, 2006: 1-5.

    [12]

    Di Renzo M, Haas H, Ghrayeb A, et al. Spatial modulation for generalized MIMO: challenges, opportunities, and implementation[J]. Proceedings of the IEEE, 2014, 102(1): 56-103.

    [13]

    Mesleh R, Elgala H, Haas H. Optical spatial modulation[J]. Journal of Optical Communications and Networking, 2011, 3(3): 234-244. doi: 10.1364/JOCN.3.000234

    [14]

    Mesleh R, Elgala H, Mehmood R, et al. Performance of optical spatial modulation with transmitters-receivers alignment[J]. IEEE Communications Letters, 2011, 15(1): 79-81. doi: 10.1109/LCOMM.2010.01.101208

    [15]

    Mesleh R, Elgala H, Hammouda M, et al. Optical spatial modulation with transmitter-receiver alignments[C]//Proceedings of 2011 16th European Conference on Networks and Optical Communications, 2011: 1-4.

    [16]

    Popoola W O, Poves E, Haas H. Spatial pulse position modulation for optical communications[J]. Journal of Lightwave Technology, 2012, 30(18): 2948-2954. doi: 10.1109/JLT.2012.2208940

    [17]

    Olanrewaju H G, Popoola W O. Effect of synchronization error on optical spatial modulation[J]. IEEE Transactions on Communications, 2017, 65(12): 5362-5374. doi: 10.1109/TCOMM.2017.2726067

    [18]

    Olanrewaju H G, Thompson J, Popoola W O. Performance of optical spatial modulation in indoor multipath channel[J]. IEEE Transactions on Wireless Communications, 2018, 17(9): 6042-6052. doi: 10.1109/TWC.2018.2854573

    [19]

    Fath T, Haas H, Di Renzo M, et al. Spatial modulation applied to optical wireless communications in indoor LOS environments[C]//Proceedings of 2011 IEEE Global Telecommunications Conference, 2011: 1-5.

    [20]

    Fath T, Klaue J, Haas H. Coded spatial modulation applied to optical wireless communications in indoor environments[C]//Proceedings of 2012 IEEE Wireless Communications and Networking Conference (WCNC), 2012: 1000-1004.

    [21]

    Masuda K, Kamakura K, Yamazato T. Spatial modulation in layered space-time coding for image-sensor-based visible light communication[C]//Proceedings of 2016 IEEE 27th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), 2016: 1-6.

    [22]

    Xu K, Yu H Y, Zhu Y J. Channel-adapted spatial modulation for massive MIMO visible light communications[J]. IEEE Photonics Technology Letters, 2016, 28(23): 2693-2696. doi: 10.1109/LPT.2016.2615128

    [23]

    Wang J Y, Zhu J X, Lin S H, et al. Adaptive spatial modulation based visible light communications: SER analysis and optimization[J]. IEEE Photonics Journal, 2018, 10(3): 7903814.

    [24]

    Wang J Y, Ge H, Zhu J X, et al. Adaptive spatial modulation for visible light communications with an arbitrary number of transmitters[J]. IEEE Access, 2018, 6: 37108-37123. doi: 10.1109/ACCESS.2018.2851280

    [25]

    Yesilkaya A, Cogalan T, Panayirci E, et al. Achieving minimum error in MISO optical spatial modulation[C]//Proceedings of 2018 IEEE International Conference on Communications (ICC), 2018: 1-6.

    [26]

    Pham H T T, Chu D B, Dang N T. Performance analysis of spatial PPM-based free-space optical communication systems with Gaussian beam[C]//Proceedings of 2014 International Conference on Advanced Technologies for Communications (ATC 2014), 2014: 144-148.

    [27]

    Özbilgin T, Koca M. Optical spatial modulation over atmospheric turbulence channels[J]. Journal of Lightwave Technology, 2015, 33(11): 2313-2323. doi: 10.1109/JLT.2015.2409302

    [28]

    Pham H T T, Dang N T. Performance improvement of spatial modulation-assisted FSO systems over Gamma-Gamma fading channels with geometric spreading[J]. Photonic Network Communications, 2017, 34(2): 213-220. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=016c863bcfc670e7388ef9b1f3358ad9

    [29]

    Abou-Rjeily C, Kaddoum G. Optical spatial modulation for FSO IM/DD communications with photon-counting receivers: performance analysis, transmit diversity order and aperture selection[J]. IEEE Journal on Selected Areas in Communications, 2019, 37(9): 2053-2068. doi: 10.1109/JSAC.2019.2929402

    [30]

    王惠琴, 宋梨花, 曹明华, 等.湍流信道下光空间调制信号的压缩感知检测[J].光学精密工程, 2018, 26(11): 2669-2674. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201811008

    Wang H Q, Song L H, Cao M H, et al. Compressed sensing detection of optical spatial modulation signal in turbulent channel[J]. Optics and Precision Engineering, 2018, 26(11): 2669-2674. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201811008

    [31]

    Wu L, Cheng J L, Zhang Z C, et al. Low-complexity spatial modulation for IM/DD optical wireless communications[J]. IEEE Photonics Technology Letters, 2019, 31(6): 475-478. doi: 10.1109/LPT.2019.2899394

    [32]

    巩玉先.基于空移键控的室内可见光MIMO无线通信技术的研究[D].南京: 南京邮电大学, 2014.

    Gong Y X. Research on indoor visible light MIMO wireless communications based on space shift keying[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2014.

    [33]

    Gong Y X, Ding L W, He Y J, et al. Analysis of space shift keying modulation applied to visible light communications[C]//IET International Conference on Information and Communications Technologies (IETICT 2013), 2013, 3: 503-507.

    [34]

    Abaza M, Mesleh R, Mansour A, et al. The performance of space shift keying for free-space optical communications over turbulent channels[J]. Proceedings of SPIE, 2015, 9387: 93870V.

    [35]

    Abaza M, Mesleh R, Mansour A, et al. Performance analysis of space-shift keying over negative-exponential and log-normal FSO channels[J]. Chinese Optics Letters, 2015, 13(5): 051001. doi: 10.3788/COL201513.051001

    [36]

    Jaiswal A, Bhatnagar M R, Jain V K. BER analysis of optical space shift keying in atmospheric turbulence environment[C]//Proceedings of 2016 10th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP), 2016: 1-6.

    [37]

    Jaiswal A, Bhatnagar M R, Jain V K. On the ergodic capacity of optical space shift keying based FSO-MIMO system under atmospheric turbulence[C]//Proceedings of 2017 IEEE International Conference on Communications (ICC), 2017: 1-7.

    [38]

    Jaiswal A, Bhatnagar M R, Jain V K. Performance evaluation of space shift keying in free-space optical communication[J]. Journal of Optical Communications and Networking, 2017, 9(2): 149-160. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_851637c688eb8c05dd427c34605f4ba2

    [39]

    Jaiswal A, Bhatnagar M R, Jain V K. Performance of optical space shift keying over gamma-gamma fading with pointing error[J]. IEEE Photonics Journal, 2017, 9(2): 7200716. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c9d44997ff4a1c79a5697a83dc3e86ce

    [40]

    Jaiswal A, Abaza M, Bhatnagar M R, et al. An investigation of performance and diversity property of optical space shift keying-based FSO-MIMO system[J]. IEEE Transactions on Communications, 2018, 66(9): 4028-4042. doi: 10.1109/TCOMM.2018.2818702

    [41]

    Jaiswal A, Bhatnagar M R, Jain V K. Partially informed transmitter-based optical space shift keying under atmospheric turbulence[J]. IEEE Transactions on Wireless Communications, 2019, 18(8): 3781-3796. doi: 10.1109/TWC.2019.2911612

    [42]

    Popoola W, Poves E, Haas H. Generalised space shift keying for visible light communications[C]//Proceedings of 2012 8th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP), 2012: 1-4.

    [43]

    王晓飞.空移键控调制在可见光通信系统中的应用研究[D].成都: 西南交通大学, 2014.

    Wang X F. On the performance of space shift keying modulation for visible light communications[D]. Xi'an: Southwest Jiaotong University, 2014.

    [44]

    Popoola W O, Poves E, Haas H. Error performance of generalised space shift keying for indoor visible light communications[J]. IEEE Transactions on Communications, 2013, 61(5): 1968-1976. doi: 10.1109/TCOMM.2013.022713.120501

    [45]

    Popoola W O, Sinanovic S, Nistazakis H E. Enhancing the error performance of optical SSK under correlated channel condition[C]//Proceedings of 2016 IEEE International Conference on Communications Workshops (ICC), 2016: 7-11.

    [46]

    付红双.可见光通信中的空间调制技术研究[D].郑州: 解放军信息工程大学, 2014.

    Fu H S. Research on spatial modulation for visible light communications[D]. Zhengzhou: The PLA Information Engineering University, 2014.

    [47]

    付红双, 朱义君, 蔡文炳.可见光多天线空分键控技术研究[J].信号处理, 2014, 30(7): 842-847. doi: 10.3969/j.issn.1003-0530.2014.07.013

    Fu H S, Zhu Y J, Cai W B. Study on optical multiple active antennas space shift keying[J]. Journal of Signal Processing, 2014, 30(7): 842-847. doi: 10.3969/j.issn.1003-0530.2014.07.013

    [48]

    Popoola W O, Haas H. Demonstration of the merit and limitation of generalised space shift keying for indoor visible light communications[J]. Journal of Lightwave Technology, 2014, 32(10): 1960-1965. doi: 10.1109/JLT.2014.2310499

    [49]

    Kadampot I A, Park K H, Alouini M S. Precoded generalized space shift keying for indoor visible light communications[C]//Proceedings of 2014 3rd International Workshop in Optical Wireless Communications (IWOW), 2014: 85-89.

    [50]

    Bian R, Videv S, Griffiths A D, et al. Experimental demonstration of generalised space shift keying for visible light communication[C]//Proceedings of 2017 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom), 2017: 1-5.

    [51]

    Olanrewaju H G, Thompson J, Popoola W O. Generalized spatial pulse position modulation for optical wireless communications[C]//Proceedings of 2016 IEEE 84th Vehicular Technology Conference (VTC-Fall), 2016: 1-5.

    [52]

    Alaka S P, Narasimhan T L, Chockalingam A. Generalized spatial modulation in indoor wireless visible light communication[C]//Proceedings of 2015 IEEE Global Communications Conference (GLOBECOM), 2015: 1-7.

    [53]

    朱义君, 付红双, 蔡文炳.可见光通信中低复杂度自适应广义空间调制算法[J].吉林大学学报(工学版), 2015, 45(6): 2080-2084. http://d.old.wanfangdata.com.cn/Periodical/jlgydxzrkxxb201506050

    Zhu Y J, Fu H S, Cai W B. Low complexity adaptive generalized spatial modulation for visible light communication[J]. Journal of Jilin University (Engineering and Technology Edition), 2015, 45(6): 2080-2084. http://d.old.wanfangdata.com.cn/Periodical/jlgydxzrkxxb201506050

    [54]

    Stavridis A, Haas H. Performance evaluation of space modulation techniques in VLC systems[C]//Proceedings of 2015 IEEE International Conference on Communication Workshop (ICCW), 2015: 1356-1361.

    [55]

    肖帅芳.室内可见光通信中的MIMO技术研究[D].郑州: 解放军信息工程大学, 2014.

    Xiao S F. Research on MIMO technology in visible light communication system[D]. Zhengzhou: The PLA Information Engineering University, 2014.

    [56]

    Basar E, Panayirci E, Uysal M, et al. Generalized LED index modulation optical OFDM for MIMO visible light communications systems[C]//Proceedings of 2016 IEEE International Conference on Communications (ICC), 2016: 1-5.

    [57]

    Nguyen N T, Nguyen Q T, Nguyen N H. The index-based optical spatial modulation scheme in optical MIMO[C]//Proceedings of 2016 International Conference on Advanced Technologies for Communications (ATC), 2016: 191-196.

    [58]

    Yesilkaya A, Basar E, Miramirkhani F, et al. Optical MIMO-OFDM with generalized LED index modulation[J]. IEEE Transactions on Communications, 2017, 65(8): 3429-3441.

    [59]

    Kumar C R, Jeyachitra R K. Power efficient generalized spatial modulation MIMO for indoor visible light communications[J]. IEEE Photonics Technology Letters, 2017, 29(11): 921-924. doi: 10.1109/LPT.2017.2694462

    [60]

    Kumar C R, Jeyachitra R K. Dual-mode generalized spatial modulation MIMO for visible light communications[J]. IEEE Communications Letters, 2018, 22(2): 280-283. doi: 10.1109/LCOMM.2017.2774263

    [61]

    曹明华, 宋梨花, 王惠琴, 等.广义无线光空间调制中的低复杂度OB-MMSE检测算法[J].光学学报, 2019, 39(12): 1206002.

    Cao M H, Song L H, Wang H Q, et al. Low-complexity OB-MMSE detection algorithm for generalized wireless-optical spatial modulation[J]. Acta Optica Sinica, 2019, 39(12): 1206002.

    [62]

    王惠琴, 李亚婷, 曹明华, 等.湍流信道中的分层光空间调制[J].光学学报, 2019, 39(7): 0706001. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201907003

    Wang H Q, Li Y T, Cao M H, et al. Layered optical spatial modulation in turbulent channels[J]. Acta Optica Sinica, 2019, 39(7): 0706001. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201907003

    [63]

    张悦, 王惠琴, 曹明华, 等.无线光通信中的增强型光空间调制[J].光学学报, 2020, 40(3): 0306001.

    Zhang Y, Wang H Q, Cao M H, et al. Enhanced optical spatial modulation in wireless optical communication[J]. Acta Optica Sinica, 2020, 40(3): 0306001.

    [64]

    Jaiswal A, Bhatnagar M R, Soni P, et al. Differential optical spatial modulation over atmospheric turbulence[J]. IEEE Journal of Selected Topics in Signal Processing, 2019, 13(6): 1417-1432. doi: 10.1109/JSTSP.2019.2921527

    [65]

    Khallaf H S, Elfiqi A E, Shalaby H M H, et al. On the performance evaluation of LQAM-MPPM techniques over exponentiated Weibull fading free-space optical channels[J]. Optics Communications, 2018, 416: 41-49. doi: 10.1016/j.optcom.2018.01.061

  • 加载中

(5)

(1)

计量
  • 文章访问数:  9769
  • PDF下载数:  2977
  • 施引文献:  0
出版历程
收稿日期:  2019-11-27
修回日期:  2020-02-24
刊出日期:  2020-03-01

目录

/

返回文章
返回