全视场外差白光干涉测量技术

汝洪武,吴玲玲,张文喜,等. 全视场外差白光干涉测量技术[J]. 光电工程,2020,47(2):190617. doi: 10.12086/oee.2020.190617
引用本文: 汝洪武,吴玲玲,张文喜,等. 全视场外差白光干涉测量技术[J]. 光电工程,2020,47(2):190617. doi: 10.12086/oee.2020.190617
Ru H W, Wu L L, Zhang W X, et al. Full-field heterodyne white light interferometry[J]. Opto-Electron Eng, 2020, 47(2): 190617. doi: 10.12086/oee.2020.190617
Citation: Ru H W, Wu L L, Zhang W X, et al. Full-field heterodyne white light interferometry[J]. Opto-Electron Eng, 2020, 47(2): 190617. doi: 10.12086/oee.2020.190617

全视场外差白光干涉测量技术

  • 基金项目:
    国家自然科学基金资助项目(61605217)
详细信息
    作者简介:
    通讯作者: 李杨(1986-),男,博士,硕士生导师,主要从事于计算光学干涉测量方向的研究。E-mail:liyang@aoe.ac.cn
  • 中图分类号: P164

Full-field heterodyne white light interferometry

  • Fund Project: Supported by National Natural Science Foundation of China (61605217)
More Information
  • 为了解决传统白光干涉测量技术中对线性位移机构的位移精度要求过高的问题,本文提出了一种全视场外差白光干涉测量技术。该技术主要通过使用存在差频的白光干涉信号作为光源来实现在大扫描步长和低扫描精度条件下相干峰位置的高精度检测。本文首先建立了白光外差干涉的数学模型,再根据数学模型提供的光强信号特性提出了整体系统设计方案,然后对测量方案的可行性进行了实验验证。最后针对多种误差对算法计算精度的影响进行了理论分析和数据对比。误差分析的结果表明:白光外差干涉测量技术提供更高的测量精度和更好的抗干扰性能,有效地降低了传统白光干涉测量对线性位移机构精度的严苛依赖,为光学自由曲面检测技术提供了更多的可选解决方案。

  • Overview: In this paper, a measurement technique for full-field heterodyne white light interference is proposed. This technology uses white light interference signals with difference frequency to detect signal, aiming at reducing the high precision requirement of traditional white light interferometry for linear displacement mechanism. High-precision detection of coherent peak position under conditions of step size and low push-pull accuracy. Reducing the high precision requirements of the push-pull mechanism is of great significance for the development of white light interferometry. Firstly, the heterodyne signal is introduced on the basis of white light interferometry, and the mathematical model of white light heterodyne interference signal is established. According to the characteristics of light intensity signal and measurement target, a set of schemes for realizing white light heterodyne interference are proposed. The mathematical model of the difference interference signal has developed a special signal acquisition method, and the corresponding signal processing algorithm is proposed according to the signal acquisition method. The feasibility of the algorithm is verified by the simulation step measurement. Then the feasibility of the measurement scheme is verified by experiments. The experimental data analysis verifies that the system and algorithm principles are feasible. Finally, the effects of different scanning steps, scanning step precision and white noise of detector on the calculation accuracy of the algorithm are analyzed. The analysis results show that the full field white light heterodyne interferometry algorithm is more abundant than the traditional white light interferometry algorithm, and has higher measurement accuracy and stronger anti-interference. The step size is 50 nm and the step error is absolute. When the value is less than 5 nm, the calculation error in the case where the absolute value of the detector error is less than 1% of the amplitude can be stably maintained less than 0.1 nm, which can effectively reduce the dependence of the conventional white light interferometry on the high-precision linear displacement mechanism. Experiments have verified that this technique can achieve planar, spherical and aspherical surface measurements. This measurement technique can be used as an alternative to optical freeform measurement.

  • 加载中
  • 图 1  白光外差干涉信号

    Figure 1.  Signals of white optical heterodyne interferometry

    图 2  相干峰寻址法示意图

    Figure 2.  Schematic diagram of coherent peak addressing

    图 3  白光外差干涉光路图

    Figure 3.  White light heterodyne interferometry schematic diagram

    图 4  实验数据拟合曲线。(a)低位置处包络曲线;(b)高位置处包络曲线

    Figure 4.  Simulation data fitting curve. (a) Envelop curve at low position; (b) Envelop curve at high position

    图 5  白光外差干涉测量仿真结果。(a)仿真台阶模型;(b)复原台阶模型

    Figure 5.  Simulation results of white optical heterodyne interferometry. (a) Simulation model; (b) Recovery model

    图 6  步长大小对计算精度的影响

    Figure 6.  Effect of step size on calculation accuracy

    图 7  步长精度误差对计算精度的影响

    Figure 7.  Effect of step accuracy on calculation accuracy

    图 8  探测器噪声对计算结果影响

    Figure 8.  Effect of detector noise on calculation accuracy

    图 9  实验设备

    Figure 9.  Experimental apparatus

    图 10  时域光强信号。(a)峰值处时域光强信号;(b)普通位置处光强信号

    Figure 10.  Time domain intensity signal.

    图 11  实验数据拟合曲线。(a)低位置处包络曲线;(b)高位置处包络曲线

    Figure 11.  Experimental data fitting curve.

  • [1]

    邓钦元, 唐燕, 周毅, 等.基于白光干涉频域分析的高精度表面形貌测量[J].中国激光, 2018, 45(6): 0604001. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgjg201806016

    Deng Q Y, Tang Y, Zhou Y, et al. High-resolution surface topography measurement based on frequency-domain analysis in white light interferometry[J]. Chinese Journal of Lasers, 2018, 45(6): 0604001. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgjg201806016

    [2]

    邓林涓.白光干涉术的测量系统与处理算法的研究[D].杭州: 中国计量学院, 2015.

    Deng L J. White light interferometry measurement system and algorithm[D]. Hangzhou: China Institute of Metrology, 2015.http://cdmd.cnki.com.cn/Article/CDMD-10356-1015638532.htm

    [3]

    Baryshev S V, Zinovev A V, Tripa C E, et al. White light interferometry for quantitative surface characterization in ion sputtering experiments[J]. Applied Surface Science, 2012, 258(18): 6963-6968. doi: 10.1016/j.apsusc.2012.03.144

    [4]

    Pavliček P, Michálek V. White-light interferometry—Envelope detection by Hilbert transform and influence of noise[J]. Optics and Lasers in Engineering, 2012, 50(8): 1063-1068. doi: 10.1016/j.optlaseng.2012.02.008

    [5]

    肖青, 傅谦, 张大龙, 等.一种提高光学干涉系统稳定性的装置[J].光电工程, 2017, 44(11): 1089-1093. doi: 10.3969/j.issn.1003-501X.2017.11.008

    Xiao Q, Fu Q, Zhang D L, et al. A method to improve the stability of the optical interference system[J]. Opto-Electronic Engineering, 2017, 44(11): 1089-1093. doi: 10.3969/j.issn.1003-501X.2017.11.008

    [6]

    张佳莹, 王红军, 朱学亮, 等.毛玻璃转速对干涉条纹成像质量的影响[J].光电工程, 2018, 45(1): 170492. doi: 10.12086/oee.2018.170492

    Zhang J Y, Wang H J, Zhu X L, et al. Effect of speeds of rotated diffuser on image quality of interference fringes[J]. Opto-Electronic Engineering, 2018, 45(1): 170492 doi: 10.12086/oee.2018.170492

    [7]

    Hirai A, Matsumoto H. High-sensitivity surface-profile measurements by heterodyne white-light interferometer[J]. Optical Engineering, 2001, 40(3): 387-392. doi: 10.1117/1.1349216

    [8]

    Matsumoto H, Hirai A. A white-light interferometer using a lamp source and heterodyne detection with acousto-optic modulators[J]. Optics Communications, 1999, 170(4-6): 217-220. doi: 10.1016/S0030-4018(99)00471-X

    [9]

    Gross M, Goy R, Forget B C, et al. Heterodyne detection of multiply scattered monochromatic light with a multipixel detector[J]. Optics Letters, 2005, 30(11): 1357-1359. doi: 10.1364/OL.30.001357

    [10]

    Wu Z, Zhang W X, Bin X L, et al. Full-field heterodyne dynamic interferometry based on Hertz-level low differential-frequency Acousto-Optic Frequency Shifter[J]. Proceedings of SPIE, 2017, 10329: 1032905.

    [11]

    杨玮萍.激光外差干涉中超声信号的解调技术研究[D].太原: 中北大学, 2016: 6-9.

    Yang W P. The research of ultrasonic signals demodulation technology in the laser heterodyne interference[D]. Taiyuan: North University of China, 2016: 6-9.http://cdmd.cnki.com.cn/Article/CDMD-10110-1016178847.htm

    [12]

    Deck L, de Groot P. High-speed noncontact profiler based on scanning white-light interferometry[J]. Applied Optics, 1994, 33(31): 7334-7338. doi: 10.1364/AO.33.007334

    [13]

    Hart M, Vass D G, Begbie M L. Fast surface profiling by spectral analysis of white-light interferograms with Fourier transform spectroscopy[J]. Applied Optics, 1998, 37(10): 1764-1769. doi: 10.1364/AO.37.001764

    [14]

    刘致远, 陈磊, 朱文华, 等.变倾角移相斜入射动态干涉仪[J].光电工程, 2019, 46(8): 180516. doi: 10.12086/oee.2019.180516

    Liu Z Y, Chen L, Zhu W H, et al. Oblique incidence dynamic phase-shifting interferometer based on inclination angle deflection[J]. Opto-Electronic Engineering, 2019, 46(8): 180516. doi: 10.12086/oee.2019.180516

  • 加载中

(11)

计量
  • 文章访问数:  8225
  • PDF下载数:  2301
  • 施引文献:  0
出版历程
收稿日期:  2019-10-15
修回日期:  2020-01-09
刊出日期:  2020-02-01

目录

/

返回文章
返回