SS-OCTA对黑色素瘤皮肤结构和血管的成像实验

刘敬璇,樊金宇,汪权,等. SS-OCTA 对黑色素瘤皮肤结构和血管的成像实验[J]. 光电工程,2020,47(2):190239. doi: 10.12086/oee.2020.190239
引用本文: 刘敬璇,樊金宇,汪权,等. SS-OCTA 对黑色素瘤皮肤结构和血管的成像实验[J]. 光电工程,2020,47(2):190239. doi: 10.12086/oee.2020.190239
Liu J X, Fan J Y, Wang Q, et al. Imaging of skin structure and vessels in melanoma by swept source optical coherence tomography angiography[J]. Opto-Electron Eng, 2020, 47(2): 190239. doi: 10.12086/oee.2020.190239
Citation: Liu J X, Fan J Y, Wang Q, et al. Imaging of skin structure and vessels in melanoma by swept source optical coherence tomography angiography[J]. Opto-Electron Eng, 2020, 47(2): 190239. doi: 10.12086/oee.2020.190239

SS-OCTA对黑色素瘤皮肤结构和血管的成像实验

  • 基金项目:
    科技部重点研发计划-数字诊疗装备(2017YFC0108201, 2017YFC0108200, 2017YFB0403700);中国科学院前沿科学重点研究项目(QYZDB-SSW-JSC03);政府间国际科技创新合作重点专项(2016YFE0107700)
详细信息
    作者简介:
    通讯作者: 史国华(1981-),男,博士,研究员,主要从事新型在体光学成像与检测的研究。E-mail:ghshi_lab@126.com
  • 中图分类号: R732.2; TP391

Imaging of skin structure and vessels in melanoma by swept source optical coherence tomography angiography

  • Fund Project: Supported by Key Research and Development Plan of the Ministry of Science and Technology - Digital Diagnosis and Treatment Equipment (2017YFC0108201, 2017YFC0108200, 2017YFB0403700), Key Research Project of Frontier Science of Chinese Academy of Sciences (QYZDB-SSW-JSC03), and Key Projects for Inter-governmental International Scientific and Technological Innovation Cooperation (2016YFE0107700)
More Information
  • 扫频源光学相干层析血管成像(SS-OCTA)是一种基于分频幅去相关血管造影法(SSADA)的新型血管成像技术,在肿瘤等疾病的早期诊断方面拥有较大前景。本文在5.12 mm×5.12 mm成像视场、标准图像最大信噪比34.3 dB的SS-OCTA成像平台,对黑色素瘤C57BL6小鼠进行皮肤结构和血管成像采集。结果表明在皮肤科疾病的早期诊断方面,利用SS-OCTA系统进行血管成像优于结构成像。

  • Overview: In recent years, optical coherence tomography (OCT) has developed rapidly and become a new imaging technology. OCT weakens coherent reflection and backscattering. Super heterodyne detection technique was used to improve the signal-to-noise ratio of biological tissue tomography. OCT has the advantages of non-invasive, high resolution, and high-speed imaging, and thus it is very suitable for biomedical applications. Scanning source optical coherence tomography (SS-OCTA) is a frequency-domain OCT technology and can support a high resolution in vivo angiography. As a new angiography technique, SS-OCTA still uses the Michelson interferometer's basic optical path and can achieve axial resolution of 15 microns by measuring the back scattering of light from low-coherent interference signals in tissue. Cross sectional images of 3D reconstruction of 3D images of biological tissues can be obtained, which are widely used in ophthalmology, dermatology imaging, tumor detection, and other fields. In addition to imaging biological tissue, SS-OCTA can also image surface blood vessels such as fundus and skin. SS-OCTA can observe the changes of retinal blood vessel morphology and blood flow in the choroid retina in the field of ophthalmology such as retinal angiography. Furthermore, it can also use pseudo-color to distinguish normal and abnormal vascular structures, blood flow signal detection and quantitative analysis, split different spectral images of the original full-spectrum image, reduce noise, improve signal-to-noise ratio, and then merge, so as to achieve retinal, choroidal vascular formation of any layer of significant cross-sectional imaging. Finally, we use laser speckle imaging and optical coherence tomography to noninvasive measurement of animal skin irritation and obtain dermal microvascular parameters. Angiography provides a possibility for the applications of SS-OCTA in the diagnosis of tumors, skin diseases, and other diseases. In fact, solid tumor growth is strongly dependent on the induced vascular network. Direct and indirect studies can support a strong evidence that tumor growth depends on blood vessels. Most tumors remain inactive until they become cancerous, and blood vessels no longer grow. Once entering the vascular phase, new blood vessels will grow rapidly to support tumor metabolism and play an important role in tumor proliferation. SS-OCTA can perform noninvasive imaging of biological tissues and blood vessels. This is of great significance for the early diagnosis of some tumors. Therefore, skin structure and angiography of melanoma C57BL6 mice were collected and compared with the SS-OCTA system. To observe the changes of the vascular development and biological tissue structure in the early stage of tumor growth, SS-OCTA is better at distinguishing vascular functional structures than the structural imaging.

  • 加载中
  • 图 1  SS-OCTA系统平台的设计图

    Figure 1.  Design drawing of SS-OCTA system platform

    图 2  利用SSADA算法对SS-OCTA系统进行成像检测的结果

    Figure 2.  Result of SS-OCTA system image with SSADA algorithm

    图 3  小鼠肿瘤处的皮肤结构图、血管图。(a)小鼠皮肤实物图;(b)小鼠皮肤结构图;(c)小鼠皮肤血管图

    Figure 3.  Skin structure, angiogram at the tumor site of mice. (a) Physical picture of mouse skin; (b) Mouse skin structure map; (c) Mouse skin vessel diagram

    图 4  结构图与血管图的叠加

    Figure 4.  The superimposition of the structure map and the vascular map

  • [1]

    Liang L, Jia Y L, Takusagawa H L, et al. Optical coherence tomography angiography of the peripapillary retina in Glaucoma[J]. Jama Ophthalmol, 2015, 133(9): 1045–1052. doi: 10.1001/jamaophthalmol.2015.2225

    [2]

    赵士勇, 俞信, 黄乃艳, 等. 大鼠耳部微血管光学相干层析成像研究[J].中国激光医学杂志, 2011, 20(3): 137–140, 202. http://d.old.wanfangdata.com.cn/Periodical/zgjgyx201103001

    Zhao S Y, Yu X, Huang N Y, et al. Rat ear blood vessels imaging by optical coherence tomography[J]. Chinese Journal of Laser Medicine & Surgery, 2011, 20(3): 137–140, 202. http://d.old.wanfangdata.com.cn/Periodical/zgjgyx201103001

    [3]

    张玉梅, 杨琳, 戴培东, 等.光学相干层析成像技术在耳科学研究中的应用[J].中国眼耳鼻喉科杂志, 2018, 18(4): 285–288. http://d.old.wanfangdata.com.cn/Periodical/zgyebhkzz201804022

    Zhang Y M, Yang L, Dai P D, et al. Application of optical coherence tomography in otology[J]. Chinese Journal of Ophthalmology and Otorhinolaryngology, 2018, 18(4): 285–288. http://d.old.wanfangdata.com.cn/Periodical/zgyebhkzz201804022

    [4]

    狄宇, 叶俊杰.光学相干层析扫描血管成像检查在眼科的应用[J].中华眼科杂志, 2017, 53(1): 65–72. doi: 10.3760/cma.j.issn.0412-4081.2017.01.014

    Di Y, Ye J J. Application of optical coherence tomography angiography in ophthalmology[J]. Chinese Journal of Ophthalmology, 2017, 53(1): 65–72. doi: 10.3760/cma.j.issn.0412-4081.2017.01.014

    [5]

    Gołębiewska J, Olechowski A, Wysocka-Mincewicz M, et al. Optical coherence tomography angiography vessel density in children with type 1 diabetes[J]. PLoS One, 2017, 12(10): e0186479. doi: 10.1371/journal.pone.0186479

    [6]

    Zhang Q, Jonas J B, Wang Q, et al. Optical coherence tomography angiography vessel density changes after acute intraocular pressure elevation[J]. Scientific Reports, 2018, 8(1): 6024. doi: 10.1038/s41598-018-24520-x

    [7]

    孟庆刚.迈克尔逊干涉仪的应用[J].黑龙江科技信息, 2011(36): 62. doi: 10.3969/j.issn.1673-1328.2011.36.079

    [8]

    Skalet A H, Li Y, Lu C D, et al. Optical coherence tomography angiography characteristics of iris melanocytic tumors[J]. Ophthalmology, 2017, 124(2): 197–204. doi: 10.1016/j.ophtha.2016.10.003

    [9]

    Folkman J. Tumor angiogenesis: therapeutic implications[J]. The New England Journal of Medicine, 1971, 285(21): 1182–1186. doi: 10.1056/NEJM197111182852108

    [10]

    Balch C M, Murad T M, Soong S J, et al. A multifactorial analysis of melanoma: prognostic histopathological features comparing Clark's and Breslow's staging methods[J]. Annals of Surgery, 1978, 188(6): 732–742. doi: 10.1097/00000658-197812000-00004

    [11]

    Fazlali H R, Karimi N, Soroushmehr S M R, et al. Vessel segmentation and catheter detection in X-ray angiograms using superpixels[J]. Medical & Biological Engineering & Computing, 2018, 56(9): 1515–1530. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1777ef55f3b391a0ebedfa5bda43e095

    [12]

    Kato S, Kitagawa K, Ishida N, et al. Assessment of coronary artery disease using magnetic resonance coronary angiography: a national multicenter trial[J]. Journal of the American College of Cardiology, 2010, 56(12): 983–991. doi: 10.1016/j.jacc.2010.01.071

    [13]

    任杰, 王颖, 顾瑛.激光散斑成像和光学相干层析成像用于皮肤微血管无创检测的基础研究[J].中国激光医学杂志, 2012, 21(5): 309. http://d.old.wanfangdata.com.cn/Conference/8545671

    Ren J, Wang Y, Gu Y. Basic research on noninvasive detection of skin microvasculature by laser speckle imaging and optical coherence yomography[J]. Chinese Journal of Laser Medicine & Surgery, 2012, 21(5): 309. http://d.old.wanfangdata.com.cn/Conference/8545671

    [14]

    喻超.

    [15]

    王倩, 魏文斌.分频幅去相干血管成像[J].国际眼科纵览, 2016, 40(2): 112–116. doi: 10.3760/cma.j.issn.1673-5803.2016.02.009

    Wang Q, Wei W B. Optical coherence tomography angiography with split-spectrum amplitude decorrelation angiography[J]. International Review of Ophthalmology, 2016, 40(2): 112–116. doi: 10.3760/cma.j.issn.1673-5803.2016.02.009

    [16]

    高峰, 樊金宇, 孔文, 等.光学相干层析技术在血管流场检测方面的研究进展[J].中国激光, 2018, 45(2): 0207019. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgjg201802020

    Gao F, Fan J Y, Kong W, et al. Research progress on optical coherence tomography in detecting vascular flow field[J]. Chinese Journal of Lasers, 2018, 45(2): 0207019. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgjg201802020

    [17]

    Jia Y L, Tan O, Tokayer J, et al. Split-spectrum amplitude-decorrelation angiography with optical coherence tomography[J]. Optics Express, 2012, 20(4): 4710–4725. doi: 10.1364/OE.20.004710

    [18]

    罗斯特, 范应威, 常玮, 等. 扫频光学相干层析成像应用于判断黏液型胃癌边界区域[J].光学学报, 2018, 38(5): 0507001. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201805032

    Luo S T, Fan Y W, Chang W, et al. Boundary region of stomach mucinous carcinoma with swept source optical coherence tomography[J]. Acta Optica Sinica, 2018, 38(5): 0507001. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201805032

    [19]

    Cozzani E, Chinazzo C, Ghigliotti G, et al. Cutaneous angiosarcoma: the role of dermoscopy to reduce the risk of a delayed diagnosis[J]. International Journal of Dermatology, 2018, 57(8): 996–997. doi: 10.1111/ijd.13966

    [20]

    Schoenenberger K, Colston B W, Maitland D J, et al. Mapping of birefringence and thermal damage in tissue by use of polarization-sensitive optical coherence tomography[J]. Applied Optics, 1998, 37(25): 6026–6036. doi: 10.1364/AO.37.006026

  • 加载中

(4)

计量
  • 文章访问数:  6970
  • PDF下载数:  2138
  • 施引文献:  0
出版历程
收稿日期:  2019-05-13
修回日期:  2019-11-23
刊出日期:  2020-02-01

目录

/

返回文章
返回