高效非成像聚光光学系统设计与性能分析

茹占强,宋贺伦,吴菲,等. 高效非成像聚光光学系统设计与性能分析[J]. 光电工程,2020,47(2):190203. doi: 10.12086/oee.2020.190203
引用本文: 茹占强,宋贺伦,吴菲,等. 高效非成像聚光光学系统设计与性能分析[J]. 光电工程,2020,47(2):190203. doi: 10.12086/oee.2020.190203
Ru Z Q, Song H L, Wu F, et al. Design and performance analysis of high efficiency non-imaging concentrated optical system[J]. Opto-Electron Eng, 2020, 47(2): 190203. doi: 10.12086/oee.2020.190203
Citation: Ru Z Q, Song H L, Wu F, et al. Design and performance analysis of high efficiency non-imaging concentrated optical system[J]. Opto-Electron Eng, 2020, 47(2): 190203. doi: 10.12086/oee.2020.190203

高效非成像聚光光学系统设计与性能分析

  • 基金项目:
    国家重点研发计划(2016YFE0129400);中国科学院青年创新促进会人才资助计划(2016290)
详细信息
    作者简介:
    通讯作者: 宋贺伦(1980-),男,博士,研究员,主要从事聚光型光伏技术、半导体器件集成等方面的研究。E-mail:hlsong2008@sinano.ac.cn
  • 中图分类号: TM615

Design and performance analysis of high efficiency non-imaging concentrated optical system

  • Fund Project: Supported by National Key R & D Program of China (2016YFE0129400) and Youth Innovation Promotion Association Talent Fund, CAS (2016290)
More Information
  • 针对菲涅尔透镜存在实际光学效率偏低的问题,本文设计了一种由非球面透镜和棒锥镜组成的高效非成像聚光光学系统。在光学设计软件Zemax的序列模式下对非球面透镜进行了优化设计,通过最大程度地减小球差,像面光斑的几何半径从42 mm降到了1.7 mm。基于此,在Zemax的非序列模式下,完成了非球面透镜和棒锥镜的建模和优化,通过蒙特卡罗光线追迹分析实现了光学效率为87%、接收角为0.9°的非成像聚光光学系统。最后,基于非球面透镜阵列和棒锥镜样品,实现了高倍聚光型光伏模组的封装与测试。测试结果表明,该模组的光电转换效率达30.03%,与菲涅尔透镜构成的高倍聚光型光伏模组相比有显著提升。

  • Overview: Nowadays, Fresnel lens was widely used as the primary optics element in high concentrated photovoltaic module. In principle, the optical efficiency of Fresnel lens could be high. However, it will decrease sharply due to the limitation of processing technology, for example, scattering of angle of chamfer, the deformation of demoulding, the shading of tooth root, and so on. These issues influence the further improvement of photoelectric conversion efficiency of high concentrated photovoltaic module. Consequently, the idea of replacing Fresnel lens with aspheric lens was proposed innovatively and a high-efficiency non-imaging concentrated optical system composed of an aspheric lens array and 48 trumpet lenses was designed. Firstly, the initial structure parameters of the aspheric lens were determined according to the characteristics of micro-scale three-junction GaAs solar cell. The aspheric lens was optimized in sequential mode of Zemax on the basis of aberration analysis of the initial structure, and the geometric radius of its image spot was reduced from 42 mm to 1.7 mm and the value of SPHA was reduced from 34.26 to 0.1 by minimizing the spherical aberration. The standard light source, detector, aspheric lens and trumpet lens were modeled in non-sequential mode of Zemax, and the trumpet were optimized by altering the radius of upper surface and the height. The high-efficiency non-imaging concentrated optical system with 87% optical efficiency and 0.9° received angle was achieved by Monte Carlo ray tracing analysis. On the basis, the high-efficiency non-imaging concentrated optical system and single aspheric lens were analyzed comparatively. The analysis results showed that the efficiency of single aspheric lens reduced from 87.4% to 40% when the incident angle increased from 0 to 0.9 degrees, and yet the efficiency of the high-efficiency non-imaging concentrated optical system still reached 79.2%. In addition, the irradiance distribution uniformity of the focal spot of the single aspheric lens was 1.77%, and the value of the high-efficiency non-imaging concentrated optical system was up to 53.42%. Finally, the packaging and test of high concentrated photovoltaic modules based on the high-efficiency non-imaging concentrated optical system and Fresnel lens were completed separately. The results of test comparatively showed that the photoelectric conversion efficiency of the module based on Fresnel lens was 25.04%, and the photoelectric conversion efficiency of the module based on the high-efficiency non-imaging concentrated optical system was up to 30.03%, which was significantly improved compared with the high concentrated photovoltaic module composed of the Fresnel lens.

  • 加载中
  • 图 1  高效非成像聚光光学系统原理图

    Figure 1.  Principle of high-efficiency non-imaging concentrated optical system

    图 2  微型三结砷化镓光伏电池截面图

    Figure 2.  Section diagram of micro-scale three-junction GaAs solar cell

    图 3  微型三结砷化镓光伏电池光电转换效率随聚光比变化曲线

    Figure 3.  Photoelectric conversion efficiency curve of micro three-junction GaAs solar cell with concentration ratio

    图 4  初始结构聚焦光斑点列图

    Figure 4.  Spot diagram of initial structure image plane

    图 5  非球面透镜聚焦光斑点列图

    Figure 5.  Spot diagram of aspheric lens image plane

    图 6  最优结构的非成像聚光光学系统的光路图

    Figure 6.  Optical path of NICO system with optimization structure

    图 7  不同入射条件下光学系统聚焦光斑辐照度分布。(a)光线垂直入射时;(b)光线入射角为0.9°时

    Figure 7.  Irradiance distribution of optical system under different incident conditions. (a) The incident angle is 0°; (b) The incident angle is 0.9°

    图 8  不同入射条件下非球面透镜聚焦光斑辐照度分布。(a)光线垂直入射时;(b)光线入射角为0.9°时

    Figure 8.  Irradiance distribution of aspheric lens under different incident conditions. (a) The incident angle is 0°; (b) The incident angle is 0.9°

    图 9  入射角为0°时不同系统聚焦光斑辐照度分布图。(a)单非球面透镜;(b)非成像聚光光学系统

    Figure 9.  Irradiance distribution of spot focused by different systems with an incidence angle of 0°. (a) The aspheric lens; (b) The NICO system

    图 10  非球面透镜阵列样品

    Figure 10.  The aspheric lens array sample

    图 11  棒锥镜样品

    Figure 11.  The trumpet lens samples

    图 12  基于非球面透镜的高倍聚光型光伏模组样品

    Figure 12.  The high concentrated photovoltaic module sample based on aspheric lens

    图 13  基于非球面透镜的高倍聚光型光伏模组Ⅰ-Ⅴ特性

    Figure 13.  Ⅰ-Ⅴ characteristic of high concentrated photovoltaic module based on aspheric lens

    图 14  基于菲涅尔透镜的高倍聚光型光伏模组样品

    Figure 14.  The high concentrated photovoltaic module sample based on fresnel lens

    图 15  基于菲涅尔透镜的高倍聚光型光伏模组Ⅰ-Ⅴ特性

    Figure 15.  Ⅰ-Ⅴ characteristic of high concentrated photovoltaic module based on fresnel lens

    表 1  球面透镜的初始结构参数

    Table 1.  Initial structural parameters of spherical lens

    表面 曲率/mm 厚度/mm 材料 半口径/mm
    物面
    光阑面 25 BK7 32
    后表面 -33.218 64 32
    像面 2
    下载: 导出CSV

    表 2  初始结构的塞德尔像差系数

    Table 2.  Seidel aberration coefficient of initial structure

    Surf SPHA S1 COMA S2 ASTI S3 FCUR S4 DIST S5 CLA(CL) CTR(CT)
    STO 0.000000 0.000000 0.000000 0.000000 0.000012 0.000000 -0.007913
    2 34.260829 -0.050551 0.000075 0.000802 -0.000001 -1.326855 0.001958
    IMA 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
    TOT 34.260829 -0.050551 0.000075 0.000802 0.000011 -1.326855 -0.005955
    下载: 导出CSV

    表 3  非球面透镜的塞德尔像差系数

    Table 3.  Seidel aberration coefficient of aspheric lens

    Surf SPHA S1 COMA S2 ASTI S3 FCUR S4 DIST S5 CLA(CL) CTR(CT)
    STO 0.000000 0.000000 0.000000 0.000000 0.000012 0.000000 -0.007913
    2 0.082364 -0.201918 0.000171 0.000792 -0.000005 -1.310230 0.004510
    IMA 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
    TOT 0.082364 -0.201918 0.000171 0.000792 0.000007 -1.310230 -0.003403
    下载: 导出CSV

    表 4  非球面透镜结构参数

    Table 4.  Structural parameters of aspheric lens

    表面 曲率/mm 厚度/mm 非球面系数 非球面高阶系数
    物面
    光阑面 14.47 A2=-2.161×10-4
    偶次非球面 -33.64 63.88 -2.34 A4=-1.554×10-8
    像面 A6=-1.769×10-11
    下载: 导出CSV

    表 5  标准光源参数

    Table 5.  The parameters of standard light source

    类型 能量/W 分析光线/条 边长/mm 发散半角/(°)
    Source two angle 1 2×106 45 0.27
    下载: 导出CSV

    表 6  探测器参数

    Table 6.  The parameters of detector

    类型 半口径/mm 径向分辨率 切向分辨率
    Detector sur 1.25 128 32
    下载: 导出CSV

    表 7  棒锥镜初始结构参数

    Table 7.  Initial structural parameters of trumpet lens

    上端面半径/mm 下端面半径/mm 高度/mm 材料
    3 1.2 10 BK7
    下载: 导出CSV

    表 8  棒锥镜最优结构参数

    Table 8.  Optimization structural parameters of trumpet lens

    上端面半径/mm 下端面半径/mm 高度/mm 材料
    2 1.2 9 BK7
    下载: 导出CSV
  • [1]

    Burhan M, Chua K J E, Ng K C. Simulation and development of a multi-leg homogeniser concentrating assembly for concentrated photovoltaic (CPV) system with electrical rating analysis[J]. Energy Conversion and Management, 2016, 116: 58–71. doi: 10.1016/j.enconman.2016.02.060

    [2]

    Rajaee M, Ghorashi S M B. Experimental measurements of a prototype high-concentration Fresnel lens and sun-tracking method for photovoltaic panel's efficiency enhancement[J]. Journal of Theoretical and Applied Physics, 2015, 9(4): 251–259. doi: 10.1007/s40094-015-0180-x

    [3]

    付蕊. Fresnel聚光器的优化设计及其在聚光光伏中的应用研究[D].北京: 华北电力大学, 2017.

    Fu R. Optimization design of Fresnel concentrator and application research in concentrator photovoltaic technology[D]. Beijing: North China Electric Power University, 2017.http://cdmd.cnki.com.cn/Article/CDMD-11412-1017210650.htm

    [4]

    Ferrer-Rodríguez J P, Fernández E F, Baig H, et al. Development, indoor characterisation and comparison to optical modelling of four Fresnel-based high-CPV units equipped with refractive secondary optics[J]. Solar Energy Materials and Solar Cells, 2018, 186: 273–283. doi: 10.1016/j.solmat.2018.06.050

    [5]

    海大鹏.菲涅尔透镜的加工工艺研究[D].哈尔滨: 哈尔滨工业大学, 2007.

    Hai D P. Research on fabricating process of Fresnel lens[D]. Harbin: Harbin Institute of Technology, 2007.http://cdmd.cnki.com.cn/Article/CDMD-10213-2008194351.htm

    [6]

    Roy A C, Yadav M, Khanna A, et al. Bi-convex aspheric optical lenses[J]. Applied Physics Letters, 2017, 110(10): 103701. doi: 10.1063/1.4978353

    [7]

    Wang Z M, Qu W J, Asundi A. A simplified expression for aspheric surface fitting[J]. Optik, 2017, 140: 291–298. doi: 10.1016/j.ijleo.2017.02.094

    [8]

    冯科, 李劲松.高斯光束非球面镜整形系统的设计[J].光电工程, 2013, 40(5): 127–132. doi: 10.3969/j.issn.1003-501X.2013.05.018

    Feng K, Li J S. Design of aspherics lenses shaping system on Gaussian beam[J]. Opto-Electronic Engineering, 2013, 40(5): 127–132. doi: 10.3969/j.issn.1003-501X.2013.05.018

    [9]

    莫卫东, 傅振堂, 范琦, 等.确定非球面最佳参考球面及非球面度的一种新方法[J].光电工程, 2012, 39(12): 7–11. doi: 10.3969/j.issn.1003-501X.2012.12.002

    Mo W D, Fu Z T, Fan Q, et al. Determining the best-fit spherical surface and asphericity of aspheric surface by calculating the fringe density[J]. Opto-Electronic Engineering, 2012, 39(12): 7–11. doi: 10.3969/j.issn.1003-501X.2012.12.002

    [10]

    Yeh N. Illumination uniformity issue explored via two-stage solar concentrator system based on Fresnel lens and compound flat concentrator[J]. Energy, 2016, 95: 542–549. doi: 10.1016/j.energy.2015.12.035

    [11]

    Obara S, Matsumura K, Aizawa S, et al. Development of a solar tracking system of a nonelectric power source by using a metal hydride actuator[J]. Solar Energy, 2017, 158: 1016–1025. doi: 10.1016/j.solener.2017.08.056

    [12]

    Yang C K, Cheng T C, Cheng C H, et al. Open-loop altitude-azimuth concentrated solar tracking system for solar-thermal applications[J]. Solar Energy, 2017, 147: 52–60. doi: 10.1016/j.solener.2017.03.014

  • 加载中

(15)

(8)

计量
  • 文章访问数:  7942
  • PDF下载数:  2562
  • 施引文献:  0
出版历程
收稿日期:  2019-04-24
修回日期:  2019-05-14
刊出日期:  2020-02-01

目录

/

返回文章
返回