采用虚拟仪器的种子呼吸测量系统设计

贾良权, 祁亨年, 赵光武, 等. 采用虚拟仪器的种子呼吸测量系统设计[J]. 光电工程, 2019, 46(11): 190051. doi: 10.12086/oee.2019.190051
引用本文: 贾良权, 祁亨年, 赵光武, 等. 采用虚拟仪器的种子呼吸测量系统设计[J]. 光电工程, 2019, 46(11): 190051. doi: 10.12086/oee.2019.190051
Jia Liangquan, Qi Hengnian, Zhao Guangwu, et al. Design of seed respiration measurement system using virtual instrument[J]. Opto-Electronic Engineering, 2019, 46(11): 190051. doi: 10.12086/oee.2019.190051
Citation: Jia Liangquan, Qi Hengnian, Zhao Guangwu, et al. Design of seed respiration measurement system using virtual instrument[J]. Opto-Electronic Engineering, 2019, 46(11): 190051. doi: 10.12086/oee.2019.190051

采用虚拟仪器的种子呼吸测量系统设计

  • 基金项目:
    国家自然科学基金青年基金资助项目(31701512);国家自然科学基金资助项目(61772198);浙江省重点研发项目(2019C02013);湖州市自然科学基金资助项目(2017YZ03)
详细信息
    作者简介:
    通讯作者: 祁亨年(1974-),男,博士,教授,主要从事种子活力无损检测的研究。E-mail:02466@zjhu.edu.cn
  • 中图分类号: O346

Design of seed respiration measurement system using virtual instrument

  • Fund Project: Supported by National Natural Science Foundation of China (31701512, 61772198), the Key Research and Development Program of Zhejiang Province (2019C02013), and Municipal Natural Science Foundation of Huzhou (2017YZ03)
More Information
  • 在种子呼吸CO2检测系统中,为了解决传统方法无法对种子呼吸CO2浓度实时测量的难题,本文根据种子呼吸CO2的特点,基于可调谐二极管激光吸收光谱(TDLAS)技术设计了基于虚拟仪器LabVIEW的种子呼吸检测系统。该系统主要包括激光光源及其控制器、基于多次反射池结构的种子呼吸容器、数据采集模块。上位机软件中主要设置了数据采集、信号处理、浓度反演等功能模块,其中浓度反演采用正交矢量的锁相放大算法,避免了参考信号与待测信号相位差产生的误差。实验结果表明,采用虚拟仪器软件实现的种子呼吸CO2检测系统,能够有效检测种子呼吸变化,抗干扰性和稳定性都较优,为后续的实验开展研发奠定了基础。

  • Overview: Seed respiration is an important index to reflect seed vigor. There are many problems in the current system for measuring CO2 applied in seed respiration such as low accuracy, no real-time and continuous measurement of CO2 concentration produced by seed respiration. In order to solve the above problems, a seed respiration detection system based on LabVIEW virtual instrument software was designed account on TDLAS (tunable diode laser absorption spectroscopy) technology according to the requirements of CO2 measurement system applied in seed respiration. The system mainly consists as following parts: 1) The laser light source and its controller: the laser light source adopts the DFB laser of Nanoplus company and the wavelength is 2004 nm; 2) The seed breathing container based on the structure of multiple reflection cell: the upper half of the container is seed breathing cavity, which is used to place seeds, and the lower half is multiple reflection pool. The total optical path in the reflection pool is 16 m, and the middle layer between the respiratory cavity and the multiple reflection pool is separated by a spacer; 3) Data acquisition module: the module includes data acquisition card and host computer data acquisition software, which mainly sets up data acquisition, signal processing, concentration inversion and other functional modules. In order to avoid the error caused by the phase difference between the reference signal and the measured signal, the phase-locked amplification algorithm of orthogonal vector was used in the concentration inversion. The background noise, light intensity change, voltage change and other influencing factors were filtered, smoothed and normalized to avoid the second harmonic concentration inversion affected by a variety of system noise, laser intensity changes and other factors, in the concentration inversion processing. Then the measurement and concentration inversion calculation were carried out under the same modulation parameters and experimental environment, in which the second harmonic peak height was fitted by the center frequency, and the concentration was calibrated with standard gas before concentration inversion. In this paper, 50 waxy corn seeds harvested in the summer of 2017 were selected, and then soaked for 2 hours, finally put into the seed respiration container for seed respiration measurement. The modulation frequency was 200 kHz and the scanning frequency was 50 Hz and the sampling rate was 10 MHz, and the detector signal was stabled at about 4.5 V after the amplification circuit. Through the experiment, it was observed that the respiratory intensity curve of waxy corn seeds soaked for two hours showed an upward trend within 8 hours. The respiratory rate increased at first and then slowed down. The slowest respiratory rate was 121.39 ppm/hour within 1 hour, and the strongest respiratory rate reached 232.46 ppm/hour in 4 to 5 hours. The experimental results showed that the system implemented by virtual instrument software to measure the CO2 produced by seed respiration can effectively detect the change of seed respiration. The design scheme laid a foundation for the subsequent detection of seed vigor grade by seed respiration CO2.

  • 加载中
  • 图 1  种子呼吸检测系统组成结构示意图

    Figure 1.  Composition schematic diagram of seed respiratory detection system

    图 2  种子呼吸检测容器

    Figure 2.  Seed breath detection container

    图 3  上位机软件前面板

    Figure 3.  Front panel of computer software

    图 4  种子呼吸检测系统流程

    Figure 4.  Flow of seed respiration detection system

    图 5  正交矢量锁相放大算法程序图

    Figure 5.  Program diagram of orthogonal vector phase-locked amplification algorithms

    图 6  信号强度和CO2浓度的线性拟合关系

    Figure 6.  Linear fitting relation between signal intensity and CO2 concentration

    图 7  浓度反演计算流程

    Figure 7.  Calculation flow of concentration inversion

    图 8  玉米种子呼吸检测结果

    Figure 8.  Respiration test results of corn seeds

    表 1  玉米种子呼吸8个时间点的呼吸强度及呼吸速率

    Table 1.  Respiratory intensity and respiratory rate of maize seeds at 8 time points

    1 2 3 4 5 6 7 8
    Respiratory intensity/ppm 121.39 310.19 521.81 751.31 983.77 1166.47 1317.15 1459.47
    Respiration rate
    /(ppm/hour)
    121.39 188.8 211.62 229.5 232.46 182.7 150.68 142.32
    下载: 导出CSV
  • [1]

    Perry D A. Report of the vigour test committee 1974–1977[J]. Seed Science and Technology, 1978, 6: 159–181. https://www.researchgate.net/publication/284942572_Report_of_the_vigour_test_committee_1974-1977

    [2]

    黄真池, 黄上志.不破坏种子活力测定方法研究Ⅱ种子活力与呼吸速率的关系[J].种子, 1998(5): 3–5. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800762816

    Huang Z C, Huang S Z. Study on non-destructive method in seed vigor determination Ⅱ the relationship between respiratory rate and cabbage seed vigor[J]. Seed, 1998(5): 3–5. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800762816

    [3]

    王若兰, 严佳, 李燕羽, 等.不同条件下小麦呼吸速率变化的研究[J].河南工业大学学报(自然科学版), 2009, 30(4): 12–16. http://d.old.wanfangdata.com.cn/Periodical/zzlsxyxb200904004

    Wang R L, Yan J, Li Y Y, et al. Research on the respiratory rate change of wheat under different conditions[J]. Journal of Henan University of Technology (Natural Science Edition), 2009, 30(4): 12–16. http://d.old.wanfangdata.com.cn/Periodical/zzlsxyxb200904004

    [4]

    吴芳, 祝凯, 严晓平, 等.不同温度条件下玉米呼吸速率变化的研究[J].粮食储藏, 2014, 43(2): 33–38. doi: 10.3969/j.issn.1000-6958.2014.02.010

    Wu F, Zhu K, Yan X P, et al. Study on changes of maize respiration rate under different temperature conditions[J]. Grain Storage, 2014, 43(2): 33–38. doi: 10.3969/j.issn.1000-6958.2014.02.010

    [5]

    姜琛昱, 孙美秀, 李迎新, 等.激光光谱技术在呼吸气体分析中的发展与未来[J].中国激光, 2018, 45(2): 0207015. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgjg201802016

    Jiang C Y, Sun M X, Li Y X, et al. Breath analysis using laser spectroscopy techniques: development and future[J]. Chinese Journal of Lasers, 2018, 45(2): 0207015. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgjg201802016

    [6]

    李萌, 郭金家, 叶旺全, 等.基于微型多次反射腔的TDLAS二氧化碳测量系统[J].光谱学与光谱分析, 2018, 38(3): 697–701. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gpxygpfx201803008

    Li M, Guo J J, Ye W Q, et al. Study on TDLAS system with a miniature multi-pass cavity for CO2 measurements[J]. Spectroscopy and Spectral Analysis, 2018, 38(3): 697–701. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gpxygpfx201803008

    [7]

    徐秀敏, 张玉钧, 何莹, 等.基于FPGA可调谐半导体激光气体检测电路设计及应用[J].光电工程, 2014, 41(10): 81–87. doi: 10.3969/j.issn.1003-501X.2014.10.014

    Xu X M, Zhang Y J, He Y, et al. The design and applications of tunable semiconductor laser gas detection circuit based on FPGA[J]. Opto-Electronic Engineering, 2014, 41(10): 81–87. doi: 10.3969/j.issn.1003-501X.2014.10.014

    [8]

    殷可为, 胥頔, 张龙, 等. TDLAS技术用于燃烧场气体温度和浓度重建研究[J].光电工程, 2016, 43(12): 20–27. doi: 10.3969/j.issn.1003-501X.2016.12.004

    Yin K W, Xu D, Zhang L, et al. 2D reconstruction for gas temperature and concentration based on TDLAS[J]. Opto-Electronic Engineering, 2016, 43(12): 20–27. doi: 10.3969/j.issn.1003-501X.2016.12.004

    [9]

    何俊锋, 阚瑞峰, 许振宇, 等.可调谐二极管激光吸收光谱氧气测量中的导数光谱处理与浓度反演算法研究[J].光学学报, 2014, 34(4): 0430003. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201404045

    He J F, Kan R F, Xu Z Y, et al. Derivative spectrum and concentration inversion algorithm of tunable diode laser absorption spectroscopy oxygen measurement[J]. Acta Optica Sinica, 2014, 34(4): 0430003. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201404045

    [10]

    崔海滨, 杨柯, 张龙, 等.基于LabVIEW的卷烟主流烟气中CO在线检测系统[J].测控技术, 2016, 35(1): 26–29. doi: 10.3969/j.issn.1000-8829.2016.01.007

    Cui H B, Yang K, Zhang L, et al. Online detection system of CO in cigarette mainstream smoke based on LabVIEW[J]. Measurement & Control Technology, 2016, 35(1): 26–29. doi: 10.3969/j.issn.1000-8829.2016.01.007

    [11]

    翟畅, 阎杰, 王晓牛, 等.可调谐二极管激光吸收光谱技术的高温温度测量仪器的研究[J].光电工程, 2015, 42(8): 86–90. doi: 10.3969/j.issn.1003-501X.2015.08.014

    Zhai C, Yan J, Wang X N, et al. The instrument research on high temperature measurement based on the tunable diode laser absorption spectroscopy[J]. Opto-Electronic Engineering, 2015, 42(8): 86–90. doi: 10.3969/j.issn.1003-501X.2015.08.014

    [12]

    张增福, 邹得宝, 陈文亮, 等. TDLAS逃逸氨检测中温度影响的研究[J].光电工程, 2014, 41(6): 32–37. doi: 10.3969/j.issn.1003-501X.2014.06.006

    Zhang Z F, Zou D B, Chen W L, et al. Temperature influence in the TDLAS detection of escaping ammonia[J]. Opto-Electronic Engineering, 2014, 41(6): 32–37. doi: 10.3969/j.issn.1003-501X.2014.06.006

    [13]

    苗澍茁, 姚丹, 钟国强, 等.基于正交锁相放大器与分段快速傅里叶变换的红外乙炔传感器[J].中国激光, 2018, 45(9): 0911014. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgjg201809014

    Miao S Z, Yao D, Zhong G Q, et al. Infrared acetylene sensor based on orthogonal lock-in amplifier and segmental fast fourier transformation[J]. Chinese Journal of Lasers, 2018, 45(9): 0911014. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgjg201809014

    [14]

    康中尉, 罗飞路, 陈棣湘, 等.利用正交型锁相放大器实现三维磁场微弱信号检测[J].传感器技术, 2004, 23(12): 69–72. doi: 10.3969/j.issn.1000-9787.2004.12.024

    Kang Z W, Luo F L, Chen D X, et al. Realization of 3D weak-magnetic signal detection based on orthogonal LIA[J]. Journal of Transducer Technology, 2004, 23(12): 69–72. doi: 10.3969/j.issn.1000-9787.2004.12.024

    [15]

    李晗, 刘建国, 阚瑞峰, 等.可调谐二极管激光吸收光谱二次谐波信号的模拟与分析[J].光谱学与光谱分析, 2013, 33(4): 881–885. doi: 10.3964/j.issn.1000-0593(2013)04-0881-05

    Li H, Liu J G, Kan R F, et al. Simulation and analysis of second-harmonic signal based on tunable diode laser absorption spectroscopy[J]. Spectroscopy and Spectral Analysis, 2013, 33(4): 881–885. doi: 10.3964/j.issn.1000-0593(2013)04-0881-05

  • 加载中

(8)

(1)

计量
  • 文章访问数:  7276
  • PDF下载数:  2533
  • 施引文献:  0
出版历程
收稿日期:  2019-01-29
修回日期:  2019-05-10
刊出日期:  2019-11-01

目录

/

返回文章
返回