基于光电伺服平台的动态角度测量方法研究

佀明华, 王伟明, 张勇, 等. 基于光电伺服平台的动态角度测量方法研究[J]. 光电工程, 2019, 46(10): 180445. doi: 10.12086/oee.2019.180445
引用本文: 佀明华, 王伟明, 张勇, 等. 基于光电伺服平台的动态角度测量方法研究[J]. 光电工程, 2019, 46(10): 180445. doi: 10.12086/oee.2019.180445
Si Minghua, Wang Weiming, Zhang Yong, et al. Research on dynamic angle measurement method based on electro-optical servo platform[J]. Opto-Electronic Engineering, 2019, 46(10): 180445. doi: 10.12086/oee.2019.180445
Citation: Si Minghua, Wang Weiming, Zhang Yong, et al. Research on dynamic angle measurement method based on electro-optical servo platform[J]. Opto-Electronic Engineering, 2019, 46(10): 180445. doi: 10.12086/oee.2019.180445

基于光电伺服平台的动态角度测量方法研究

  • 基金项目:
    国家自然科学基金资助项目(51305455);陆军装备部资助课题(ZS2014070140A12002);河北省自然科学基金资助项目(E201610104)
详细信息
    作者简介:
    通讯作者: 王伟明(1979-),男,博士,讲师,硕士生导师,主要从事光电系统伺服控制技术的研究。E-mail:wangwm@stdu.edu.cn
  • 中图分类号: TP391.4

Research on dynamic angle measurement method based on electro-optical servo platform

  • Fund Project: Supported by National Natural Science Foundation of China (51305455), Army Equipment Department (ZS2014070140A12002), and Natural Science Foundation of Hebei Province (E201610104)
More Information
  • 针对动态角度测量的成本高及精度低的问题,提出一种基于非合作目标视觉跟踪的光电测量方法。利用安装在被测对象上的光电伺服平台搭载相机和激光测距仪对非合作目标进行实时跟踪和距离测量,根据伺服平台输出的精密角度、非合作目标距离和被测角度之间的转化关系计算出被测动态角度值。研制了基于光电伺服平台的动态角度测量装置,并对其进行了精度标定和误差分析。利用高精度旋转台模拟被测动态角度进行实验,验证了测量方法的可行性。实验结果表明在测量空间11.082 m范围内,测角误差在±0.09°以内。

  • Overview: In the field of military and industrial production, it is often necessary to measure the dynamic corners of large rotating equipment. This type of rotating angle, which cannot be measured directly by angle measuring equipment, requires indirect measurement with the help of a sensor, and the measured angle is calculated according to the sensor data. Aiming at the problems of high measurement cost and low precision of dynamic angle measurement methods such as inertial measurement method, double theodolite measurement method, and three coordinate measurement method, an electro-optical measurement method based on non-cooperative target vision tracking is presented. Mathematical calculation model and dynamic compensation model for dynamic angle measurement are established. Using electro-optical servo platform mounted on the measured object to carry the camera and the laser rangefinder for the real time tracking and distance measurement of the non-cooperative target, the dynamic angle value is calculated according to the conversion relationship between the high precision angle of measurement of the servo system and the distance of the non-cooperative target and compensating the angle value according to the dynamic compensation model.

    A dynamic angle measuring device is developed. The servo system structure adopts the azimuth and pitch double frame structure, the inner frame is the pitch channel, the outer frame is the azimuth channel, and the camera and the laser rangefinder are installed in the inner frame. The frame is driven directly by the permanent magnet synchronous motor, and the 16-bit rotary transformer is used as the angle measuring unit. Futhermore, its precision calibration and error analysis are carried out and accuracy of servo system up to 30" after calibration.

    The servo control adopts the speed position double closed loop, using the instantaneous angular rate of the rate Gyro induction camera installed in the inner frame. This angular rate is regarded as the speed loop feedback, which make up of the closed loop with servo motor composition speed to isolate the disturbance of the carrier. Achieving stable tracking of non-cooperative goals, the non-cooperative target miss is used as the position ring input, and the spin angle is used as the feedback quantity to form the position closed loop. Using the high precision manual displacement table to simulate the measured dynamic angle, the feasibility of the measuring method is verified. The experimental results show that the measured angle error is 0.09° within the range of 11.082 m and angle measuring range reaches ±80°.

  • 加载中
  • 图 1  测量数学模型图

    Figure 1.  Mathematical model diagram of measurement

    图 2  视轴偏移图

    Figure 2.  Visual axis offset graph

    图 3  测量示意图

    Figure 3.  Schematic diagram of the measurement setup

    图 4  测量实物图。(a) 整体图;(b) 旋转台;(c) 测量装置

    Figure 4.  Physical diagram of measurement setup. (a) Overall diagram; (b) Rotary table; (c) Measuring device

    图 5  标定过程示意图

    Figure 5.  Schematic diagram of the calibration process

    图 6  跟踪序列图像

    Figure 6.  Tracking sequence images

    图 7  目标跟踪流程图

    Figure 7.  Target tracking flowchart

    图 8  测角误差分布图

    Figure 8.  The distribution chart of angle measurement error

  • [1]

    Peng G L, Sun Y, Han R, et al. A measuring method for large antenna assembly using laser and vision guiding technology[J]. Measurement, 2016, 92: 400–412. doi: 10.1016/j.measurement.2016.06.020

    [2]

    Estler W T, Edmundson K L, Peggs G N, et al. Large-scale metrology – an update[J]. CIRP Annals, 2002, 51(2): 587–609. doi: 10.1016/S0007-8506(07)61702-8

    [3]

    陈志斌, 肖文健, 马东玺, 等.大尺寸空间角测量技术进展及其分析[J].应用光学, 2016, 37(3): 407–414. http://d.old.wanfangdata.com.cn/Periodical/yygx201603015

    Chen Z B, Xiao W J, Ma D X, et al. Technical progress and analysis on large-scale spatial angle measurement[J]. Journal of Applied Optics, 2016, 37(3): 407–414. http://d.old.wanfangdata.com.cn/Periodical/yygx201603015

    [4]

    于冀平, 郭继平.动态角测量方法研究进展[J].中国测试, 2012, 38(3): 27–30. http://d.old.wanfangdata.com.cn/Periodical/zgcsjs201203008

    Yu J P, Guo J P. Research development of dynamic angle measurement methods[J]. China Measurement & Test, 2012, 38(3): 27–30. http://d.old.wanfangdata.com.cn/Periodical/zgcsjs201203008

    [5]

    Xiao W J, Chen Z B, Ma D X, et al. Large-scale spatial angle measurement and the pointing error analysis[J]. Optoelectronics Letters, 2016, 12(3): 229–232. doi: 10.1007/s11801-016-6028-z

    [6]

    Zhang G X, Yao J W, Qiu Z R, et al. Large-scale space angle measurement[J]. CIRP Annals, 2008, 57(1): 525–528. doi: 10.1016/j.cirp.2008.03.122

    [7]

    Yang L H, Yang X Y, Zhu J G, et al. Novel method for spatial angle measurement based on rotating planar laser beams[J]. Chinese Journal of Mechanical Engineering, 2011, 23(6): 758–764.

    [8]

    Wang Z Y, Wang Y Y, Cheng W, et al. A monocular vision system based on cooperative targets detection for aircraft pose measurement[J]. Journal of Physics: Conference Series, 2017, 887(1): 012029. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=IOP_9361217

    [9]

    杜俊峰, 张孟伟, 张晓明.光电经纬仪测角精度分析[J].应用光学, 2012, 33(3): 466–473. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yygx201203005

    Du J F, Zhang M W, Zhang X M. Angle measurement accuracy of photoelectric theodolite[J]. Journal of Applied Optics, 2012, 33(3): 466–473. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yygx201203005

    [10]

    曹建安, 张乐平, 吴昊, 等.采用倾角传感器实现空间旋转角度测量的解析方法研究[J].西安交通大学学报, 2013, 47(10): 109–114. doi: 10.7652/xjtuxb201310019

    Cao J A, Zhang L P, Wu H, et al. Analytical approach for measurement of spatial angle with inclination sensor[J]. Journal of Xi'an Jiaotong University, 2013, 47(10): 109–114. doi: 10.7652/xjtuxb201310019

    [11]

    胡文川, 裘祖荣, 张国雄.大尺寸空间异面直线夹角的检测[J].光学 精密工程, 2012, 20(7): 1427–1433. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201207003

    Hu W C, Qiu Z R, Zhang G X. Measurement of large-scale space angle formed by non-uniplanar lines[J]. Optics and Precision Engineering, 2012, 20(7): 1427–1433. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201207003

    [12]

    江洁, 苗准, 张广军.点结构光动态姿态角测量系统[J].红外与激光工程, 2010, 39(3): 532–536. doi: 10.3969/j.issn.1007-2276.2010.03.032

    Jiang J, Miao Z, Zhang G J. Dynamic altitude angle measurement system based on dot-structure light[J]. Infrared and Laser Engineering, 2010, 39(3): 532–536. doi: 10.3969/j.issn.1007-2276.2010.03.032

    [13]

    郭继平, 李阿蒙, 于冀平, 等.双目立体视觉动态角度测量方法[J].中国测试, 2015, 41(7): 21–23, 36.

    Guo J P, Li A M, Yu J P, et al. Dynamic angle measurement method based on stereo vision[J]. China Measurement & Test, 2015, 41(7): 21–23, 36.

    [14]

    孙岩, 张征宇, 黄诗捷, 等.风洞试验中模型迎角视觉测量技术研究[J].航空学报, 2013, 34(1): 1–7. http://d.old.wanfangdata.com.cn/Periodical/hkxb201301001

    Sun Y, Zhang Z Y, Huang S J, et al. Vision measurement technology research for model angle of attack in wind tunnel tests[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(1): 1–7. http://d.old.wanfangdata.com.cn/Periodical/hkxb201301001

    [15]

    关印, 王向军, 阴雷, 等.基于物体表面形貌的单相机视觉位姿测量方法[J].光电工程, 2018, 45(1): 170522. doi: 10.12086/oee.2018.170522

    Guan Y, Wang X J, Yin L, et al. Monocular position and pose measurement method based on surface topography of object[J]. Opto-Electronic Engineering, 2018, 45(1): 170522. doi: 10.12086/oee.2018.170522

    [16]

    丁力平, 陈文亮, 卢鹄.面向大型飞机装配的组合式大尺寸测量系统[J].航空制造技术, 2013(13): 76–80. doi: 10.3969/j.issn.1671-833X.2013.13.014

    Ding L P, Chen W L, Lu G. Combined large-scale measurement system for large aircraft assembly[J]. Aeronautical Manufacturing Technology, 2013(13): 76–80. doi: 10.3969/j.issn.1671-833X.2013.13.014

    [17]

    魏振忠, 孙文, 张广军, 等.激光跟踪视觉导引测量中靶标球球心定位方法[J].红外与激光工程, 2012, 41(4): 929–935. doi: 10.3969/j.issn.1007-2276.2012.04.019

    Wei Z Z, Sun W, Zhang G J, et al. Method for finding the 3D center positions of the target reflectors in laser tracking measurement system based on vision guiding[J]. Infrared and Laser Engineering, 2012, 41(4): 929–935. doi: 10.3969/j.issn.1007-2276.2012.04.019

    [18]

    周富强, 张广军, 江洁, 等.现场双经纬仪三维坐标测量系统[J].机械工程学报, 2004, 40(1): 165–169. doi: 10.3321/j.issn:0577-6686.2004.01.033

    Zhou F Q, Zhang G J, Jiang J, et al. Three-dimensional coordinate measuring system with bino-theodolites on site[J]. Chinese Journal of Mechanical Engineering, 2004, 40(1): 165–169. doi: 10.3321/j.issn:0577-6686.2004.01.033

    [19]

    任顺清, 陈海兵, 赵洪波.用经纬仪测量大尺寸三维导轨垂直度的方法[J].仪器仪表学报, 2012, 33(1): 188–193. doi: 10.3969/j.issn.0254-3087.2012.01.028

    Ren S Q, Chen H B, Zhao H B. Perpendicularity measurement method of 3-D large guideway with theodolite[J]. Chinese Journal of Scientific Instrument, 2012, 33(1): 188–193. doi: 10.3969/j.issn.0254-3087.2012.01.028

    [20]

    林嘉睿, 邾继贵, 张皓琳, 等.激光跟踪仪测角误差的现场评价[J].仪器仪表学报, 2012, 33(2): 463–468. doi: 10.3969/j.issn.0254-3087.2012.02.032

    Lin J R, Zhu J G, Zhang H L, et al. Field evaluation of laser tracker angle measurement error[J]. Chinese Journal of Scientific Instrument, 2012, 33(2): 463–468. doi: 10.3969/j.issn.0254-3087.2012.02.032

    [21]

    张滋黎, 朱涵, 周维虎.激光跟踪仪转镜倾斜误差的标定及修正[J].光学 精密工程, 2015, 23(5): 1205–1212. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201505001

    Zhang Z L, Zhu J G, Zhou W H. Error calibration and correction of mirror tilt in laser trackers[J]. Optics and Precision Engineering, 2015, 23(5): 1205–1212. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201505001

    [22]

    Henriques J F, Caseiro R, Martins P, et al. High-speed tracking with kernelized correlation filters[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(3): 583–596. doi: 10.1109/TPAMI.2014.2345390

  • 加载中

(8)

计量
  • 文章访问数:  8757
  • PDF下载数:  2509
  • 施引文献:  0
出版历程
收稿日期:  2018-08-25
修回日期:  2018-12-26
刊出日期:  2019-10-18

目录

/

返回文章
返回