水下热扰动的光学成像失真问题研究

王从政, 胡松, 高椿明, 等. 水下热扰动的光学成像失真问题研究[J]. 光电工程, 2019, 46(10): 180438. doi: 10.12086/oee.2019.180438
引用本文: 王从政, 胡松, 高椿明, 等. 水下热扰动的光学成像失真问题研究[J]. 光电工程, 2019, 46(10): 180438. doi: 10.12086/oee.2019.180438
Wang Congzheng, Hu Song, Gao Chunming, et al. Study on optical imaging distortion of underwater thermal disturbance[J]. Opto-Electronic Engineering, 2019, 46(10): 180438. doi: 10.12086/oee.2019.180438
Citation: Wang Congzheng, Hu Song, Gao Chunming, et al. Study on optical imaging distortion of underwater thermal disturbance[J]. Opto-Electronic Engineering, 2019, 46(10): 180438. doi: 10.12086/oee.2019.180438

水下热扰动的光学成像失真问题研究

  • 基金项目:
    国家自然科学基金资助项目(61675206)
详细信息
    作者简介:
    通讯作者: 王从政, E-mail: wangcongzheng@ioe.ac.cn
  • 中图分类号: TH711

Study on optical imaging distortion of underwater thermal disturbance

  • Fund Project: Supported by National Natural Science Foundation of China (61675206)
More Information
  • 为了研究水下热扰动环境对光学成像的畸变、模糊等失真问题的影响,利用水下图像的灰度分布、结构相似性图像度量(SSIM)和归一化最大灰度梯度清晰度评价函数来评价目标图像在径向和轴向上的畸变和模糊等失真程度,得到水下热扰动对光学成像变化的规律。实验数据表明,随着成像系统与目标的轴向距离增加,图像的畸变和模糊程度越来越大。轴向距离L1=500 mm时,对应图像的SSIM值优于0.7,归一化清晰度值优于0.8;轴向距离L3=1500 mm时,对应图像的SSIM值低于0.2,归一化清晰度值不足0.6;此外,轴向距离L1时,成像在径向上,距离发热源越近,边缘漂移越大,即成像图像畸变越严重;最后,相同轴向和径向条件下,目标在不同时刻的图像SSIM和归一化清晰度值有优劣,该结论可为后续的水下图像复原提供参考。

  • Overview: Underwater optical imaging is widely used in industry, agriculture, scientific research, and other fields. When there are heat sources in the imaging light path, the target itself is a heat source, or there are disturbances caused by other reasons in the water environment, due to the non-uniformity of the imaging light field, image distortion and defocusing will occur in the underwater image. Therefore, it is very necessary to study the problem of imaging distortion under the condition of underwater thermal disturbance.

    In order to study the influence of underwater thermal disturbance, an experimental platform with heat sources and thermal convection is designed. The underwater imaging platform can be adjusted along the axis to change the distance between the camera and the target to be L1(500 mm), L2(1000 mm) and L3(1500 mm), respectively. The distortion level of target image is evaluated through the gray scale distribution, structural similarity image measurement (SSIM), and normalized maximum gray-scale gradient definition evaluation function of underwater images. For gray scale distribution, the trend of disturbance influence is analyzed based on statistics, which provides a basis for image sequence restoration and correction under thermal disturbance environment. For SSIM, it is an effective method for image distortion analysis, and its evaluation index includes the brightness, contrast, as well as structure of the image. For the evaluation of the fuzzy index, the normalized maximum gray gradient clarity evaluation function based on edge information is adopted, that is, the closer the gray value of the whole pixel of the image is to that of the reference image, the smaller the ambiguity degree of the image is.

    Experimental results show that with the increase of the axial distance between the imaging system and the target, the level of image distortion and blurring becomes larger and larger. When the axial distance L1=500 mm, the SSIM is better than 0.7 and the normalized definition is better than 0.8. When the axial distance L3=1500 mm, the SSIM is lower than 0.2 and the normalized definition is less than 0.6. In addition, when the axial distance is L1, the drift of the edges will be greater as the imaging area comes closer the heating source in the radial direction, that is, the imaging distortion is more serious. Furthermore, under the same axial and radial conditions, the conclusion that the SSIM and normalized definition values of the target images are different at different times can provide a reference for further underwater image restoration.

  • 加载中
  • 图 1  方向模板图。(a) 0°;(b) 45°;(c) 90°;(d) 135°;(e) 180°;(f) 225°;(g) 270°;(h) 315°

    Figure 1.  Direction templates. (a) 0°; (b) 45°; (c) 90°; (d) 135°; (e) 180°; (f) 225°; (g) 270°; (h) 315°

    图 2  实验平台结构示意图

    Figure 2.  Structure diagram of the experimental platform

    图 3  实验现场图。(a)实验设备;(b)成像系统工作框图

    Figure 3.  Experimental site. (a) Experimental equipment; (b) Working diagram of imaging system

    图 4  无扰动成像系统采集图

    Figure 4.  Collected image with no thermal disturbance

    图 5  有扰动成像系统采集图

    Figure 5.  Collected image with thermal disturbance

    图 6  L1条件下的灰度分布。(a)第1列;(b)第2列;(c)第3列;(d)第4列;(e)第5列

    Figure 6.  Image gray-scale distributions of L1. (a) Column 1; (b) Column 2; (c) Column 3; (d) Column 4; (e) Column 5

    图 7  L2条件下的灰度分布。(a)第1列;(b)第2列;(c)第3列;(d)第4列;(e)第5列

    Figure 7.  Image gray-scale distributions of L2. (a) Column 1; (b) Column 2; (c) Column 3; (d) Column 4; (e) Column 5

    图 8  L3条件下的灰度分布。(a)第1列;(b)第2列;(c)第3列;(d)第4列;(e)第5列

    Figure 8.  Image gray-scale distributions of L3. (a) Column 1; (b) Column 2; (c) Column 3; (d) Column 4; (e) Column 5

    图 9  不同成像距离下结构相似性度量比较

    Figure 9.  Comparison of SSIM among different objective distances

    图 10  不同成像距离下清晰度比较

    Figure 10.  Comparison of clarity among different objective distances

  • [1]

    Gu K, Zhai G T, Yang X K, et al. Automatic contrast enhancement technology with saliency preservation[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2015, 25(9): 1480-1494. doi: 10.1109/TCSVT.2014.2372392

    [2]

    张赫, 徐玉如, 万磊, 等.水下退化图像处理方法[J].天津大学学报, 2010, 43(9): 827-833. doi: 10.3969/j.issn.0493-2137.2010.09.012

    Zhang H, Xu Y R, Wan L, et al. Processing method for underwater degenerative Image[J]. Journal of Tianjin University, 2010, 43(9): 827-833. doi: 10.3969/j.issn.0493-2137.2010.09.012

    [3]

    黄文有, 徐向民, 吴凤岐, 等.核环境水下双目视觉立体定位技术研究[J].光电工程, 2016, 43(12): 28-33. doi: 10.3969/j.issn.1003-501X.2016.12.005

    Huang W Y, Xu X M, Wu F Q, et al. Research of underwater binocular vision stereo positioning technology in nuclear condition[J]. Opto-Electronic Engineering, 2016, 43(12): 28-33. doi: 10.3969/j.issn.1003-501X.2016.12.005

    [4]

    谌雨章, 叶婷, 程超杰, 等.水下湍流成像退化及优化恢复研究[J].光电工程, 2018, 45(12): 180233. doi: 10.12086/oee.2018.180233

    Chen Y Z, Ye T, Cheng C J, et al. Degradation and optimal recovery of underwater turbulent imaging[J]. Opto-Electronic Engineering, 2018, 45(12): 180233. doi: 10.12086/oee.2018.180233

    [5]

    郭继昌, 李重仪, 郭春乐, 等.水下图像增强和复原方法研究进展[J].中国图象图形学报, 2017, 22(3): 273-287. http://d.old.wanfangdata.com.cn/Periodical/zgtxtxxb-a201703001

    Guo J C, Li C Y, Guo C L, et al. Research progress of underwater image enhancement and restoration methods[J]. Journal of Image and Graphics, 2017, 22(3): 273-287. http://d.old.wanfangdata.com.cn/Periodical/zgtxtxxb-a201703001

    [6]

    Galdran A, Pardo D, Picón A, et al. Automatic Red-Channel underwater image restoration[J]. Journal of Visual Communication and Image Representation, 2015, 26: 132-145. doi: 10.1016/j.jvcir.2014.11.006

    [7]

    Trucco E, Olmos-Antillon A T. Self-tuning underwater image restoration[J]. IEEE Journal of Oceanic Engineering, 2006, 31(2): 511-519. doi: 10.1109/JOE.2004.836395

    [8]

    Zhao X W, Jin T, Qu S. Deriving inherent optical properties from background color and underwater image enhancement[J]. Ocean Engineering, 2015, 94: 163-172. doi: 10.1016/j.oceaneng.2014.11.036

    [9]

    Chiang J Y, Chen Y C. Underwater image enhancement by wavelength compensation and dehazing[J]. IEEE Transactions on Image Processing, 2012, 21(4): 1756-1769. doi: 10.1109/TIP.2011.2179666

    [10]

    Serikawa S, Lu H M. Underwater image dehazing using joint trilateral filter[J]. Computers & Electrical Engineering, 2014, 40(1): 41-50. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0232460372/

    [11]

    Wen Z Y, Lambert A, Fraser A, et al. Bispectral analysis and recovery of images distorted by a moving water surface[J]. Applied Optics, 2010, 49(33): 6376-6384. doi: 10.1364/AO.49.006376

    [12]

    王马华, 赵正敏, 王士湖, 等.基于改进湍流模型和偏振成像技术的水下退化图像复原方法[J].农业工程学报, 2013, 29(S1): 203-209. http://d.old.wanfangdata.com.cn/Periodical/nygcxb2013z1034

    Wang M H, Zhao Z M, Wang S H, et al. Restoring method for underwater degraded images based on improved turbulence model and polarization imaging[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(S1): 203-209. http://d.old.wanfangdata.com.cn/Periodical/nygcxb2013z1034

    [13]

    李磊, 王庆, 肖照林.一种基于视频的水下场景复原算法[J].系统仿真学报, 2012, 24(1): 188-191, 196. http://d.old.wanfangdata.com.cn/Conference/7571365

    Li L, Wang Q, Xiao Z L. Underwater image restoration algorithm from distorted video[J]. Journal of System Simulation, 2012, 24(1): 188-191, 196. http://d.old.wanfangdata.com.cn/Conference/7571365

    [14]

    吴军, 王志军, 徐海涛, 等.视觉测量中轴向热干扰成像问题研究[J].应用光学, 2018, 39(2): 235-239. http://d.old.wanfangdata.com.cn/Periodical/yygx201802014

    Wu J, Wang Z J, Xu H T, et al. Study on axial thermal disturbance imaging in vision measurement[J]. Journal of Applied Optics, 2018, 39(2): 235-239. http://d.old.wanfangdata.com.cn/Periodical/yygx201802014

    [15]

    黄战华, 王蓓, 陈嘉佳, 等.变折射率介质对成像变形的影响[J].天津大学学报, 2006, 39(6): 708-711. doi: 10.3969/j.issn.0493-2137.2006.06.013

    Huang Z H, Wang B, Chen J J, et al. Impact of variable-refractive-index medium on imaging distortion[J]. Journal of Tianjin University, 2006, 39(6): 708-711. doi: 10.3969/j.issn.0493-2137.2006.06.013

    [16]

    Hou W L, Woods S, Jarosz E, et al. Optical turbulence on underwater image degradation in natural environments[J]. Applied Optics, 2012, 51(14): 2678-2686. doi: 10.1364/AO.51.002678

    [17]

    Wang C Z, Hu S, Gao C M, et al. Nuclear radiation degradation study on HD camera based on CMOS image sensor at different dose rates[J]. Sensors, 2018, 18(2): 514. doi: 10.3390/s18020514

    [18]

    Kanaev A V, Hou W, Restaino S R, et al. Restoration of images degraded by underwater turbulence using structure tensor oriented image quality (STOIQ) metric[J]. Optics Express, 2015, 23(13): 17077-17090. doi: 10.1364/OE.23.017077

    [19]

    洪裕珍, 任国强, 孙健.离焦模糊图像清晰度评价函数的分析与改进[J].光学 精密工程, 2014, 22(12): 3401-3408. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201412034

    Hong Y Z, Ren G Q, Sun J. Analysis and improvement on sharpness evaluation function of defocused image[J]. Optics and Precision Engineering, 2014, 22(12): 3401-3408. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201412034

  • 加载中

(10)

计量
  • 文章访问数:  6980
  • PDF下载数:  2489
  • 施引文献:  0
出版历程
收稿日期:  2018-08-21
修回日期:  2018-11-26
刊出日期:  2019-10-18

目录

/

返回文章
返回