New website getting online, testing
    • 摘要: 卷积神经网络在单标签图像分类中表现出了良好的性能,但是,如何将其更好地应用到多标签图像分类仍然是一项重要的挑战。本文提出一种基于卷积神经网络并融合注意力机制和语义关联性的多标签图像分类方法。首先,利用卷积神经网络来提取特征;其次,利用注意力机制将数据集中的每个标签类别和输出特征图中的每个通道进行对应;最后,利用监督学习的方式学习通道之间的关联性,也就是学习标签之间的关联性。实验结果表明,本文方法可以有效地学习标签之间语义关联性,并提升多标签图像分类效果。

       

      Abstract: Multi-label image classification which is a generalization of the single-label image classification is aimed to assign multi-labels to the image to full express the specific visual concepts contained in the image. We propose a method based on convolutional neural networks, which combines attention mechanism and semantic relevance, to solve the multi label problem. Firstly, we use convolution neural network to extract features. Then, we apply the attention mechanism to obtain the correspondence between the label and channel of the feature map. Finally, we explore the channel-wise correlation which is essentially the semantic dependencies between labels by means of supervised learning. The experimental results show that the proposed method can exploit the dependencies between multiple tags to improve the performance of multi label image classification.