基于对象的三维图像颜色传递与视差优化

李鹏飞, 邵枫. 基于对象的三维图像颜色传递与视差优化[J]. 光电工程, 2019, 46(9): 180446. doi: 10.12086/oee.2019.180446
引用本文: 李鹏飞, 邵枫. 基于对象的三维图像颜色传递与视差优化[J]. 光电工程, 2019, 46(9): 180446. doi: 10.12086/oee.2019.180446
Li Pengfei, Shao Feng. Stereoscopic color transfer and disparity remapping based on selected object[J]. Opto-Electronic Engineering, 2019, 46(9): 180446. doi: 10.12086/oee.2019.180446
Citation: Li Pengfei, Shao Feng. Stereoscopic color transfer and disparity remapping based on selected object[J]. Opto-Electronic Engineering, 2019, 46(9): 180446. doi: 10.12086/oee.2019.180446

基于对象的三维图像颜色传递与视差优化

  • 基金项目:
    国家自然科学基金资助项目(61622109);宁波市自然科学基金资助项目(2017A610112)
详细信息
    作者简介:
    通讯作者: 邵枫(1980-),男,教授,博导,主要从事三维视频信号编码与质量评价方面的研究。E-mail:shaofeng@126.com
  • 中图分类号: TP391.7

Stereoscopic color transfer and disparity remapping based on selected object

  • Fund Project: Supported by National Natural Science Foundation of China (61622109) and Natural Science Foundation of Ningbo (2017A610112)
More Information
  • 颜色传递是近年来图像处理和计算机视觉领域的热门研究问题,随着立体图像技术的发展,对于立体图像的颜色传递越来越受关注。本文提出一种双目立体图像的颜色传递方法,在完成颜色传递的同时力求提升用户的观看体验。根据用户实际需求,可以对目标对象进行颜色传递,而保持背景的颜色不改变。在本文提出的方法中,由用户指定图像对象,然后用图割的方法进行图像分割,根据所选对象与目标图像颜色特征的多元高斯模型匹配完成颜色传递。为了进一步增强观看效果,本文在颜色传递的同时进行非线性视差优化,从而提高目标对象的深度感。本文从不同立体图像库中随机选取图像进行实验,实验结果表明,本文方法中颜色传递和视差优化的结合,可以很好地提升立体图像的观看体验。

  • Overview: Color transfer is a hot research topic in the field of image processing and machine vision in recent years. It is a process of transferring the color of a target image to the source image so that the source image and the target image have the same or similar color characteristics. It has a wide range of application prospects and can be used for image color correction, re-rendering and artistic processing. The existing color transfer methods are to process only the 2D image, establish the source image and the target image color feature multivariate Gaussian model by parameter estimation, and get the source image color feature model by multivariate Gaussian function transformation to approach the color feature model of the target image, then finish the color transfer. With the development of stereoscopic image technology, the color transfer of stereoscopic images has attracted more and more attention. In this paper, a color transfer strategy for binocular stereoscopic images is proposed, which can improve the viewing experience of users while completing color transfer. According to the actual needs of users, we can only transfer the color of the target object, and keep the color of the background unchanged. In the proposed method, the user specifies the image object, and then uses the graph cut method to segment the image, according to the selected object and the color feature model matching of the target image to complete color transfer. In order to further enhance the viewing effect, this paper carries out nonlinear disparity optimization while color transfer, so as to improve the depth of the object. According to the histogram feature of disparity map, the region which has a great influence on the stereoscopic image is determined, and the disparity mapping function is calculated by integral operation, then the disparity of the selected object which makes the depth sense of the selected object more intense is obtained. In this paper, images are randomly selected from different stereo image databases and our experiment results have been compared with the linear disparity adjustment method. The results show that this method can improve the depth sense of the object more effectively. To prove the effect of this strategy, a subjective experiment is designed, in which different people are demanded to wear stereo glasses to choose the images they feel better. Experimental results show that the combination of color transfer and disparity optimization can effectively improve the viewing experience of stereoscopic images.

  • 加载中
  • 图 1  基于对象的立体图像颜色传递与视差优化方法框图

    Figure 1.  The proposed framework

    图 2  基于用户选定区域的图像分割方法。

    Figure 2.  Graph cut method based on selected object.

    图 3  颜色分布模型变换。

    Figure 3.  Color distribution transformation.

    图 4  非线性视差映射关系示意。

    Figure 4.  Nonlinear disparity mapping.

    图 5  非线性视差映射效果。

    Figure 5.  Nonlinear disparity mapping result.

    图 6  基于用户选择对象的颜色传递。

    Figure 6.  Color transfer based on selected objects.

    图 7  本文方法的结果。

    Figure 7.  Results of the proposed method.

    图 8  视差优化方法对比。

    Figure 8.  Comparison of disparity optimization methods.

    图 9  颜色传递方法对比。

    Figure 9.  Comparison of color transfer methods.

    图 10  本文方法与源图像对比结果

    Figure 10.  Comparison between proposed method and the source image

    图 11  本文方法与线性视差调整方法对比结果

    Figure 11.  Comparison between proposed method and the linear disparity mapping

  • [1]

    Faridul H S, Pouli T, Chamaret C, et al. A survey of color mapping and its applications[C]//Eurographics 2014 State of the Art Reports, 2014.

    [2]

    Pouli T, Reinhard E. Progressive histogram reshaping for creative color transfer and tone reproduction[C]//Proceedings of the 8th International Symposium on Non-Photorealistic Animation and Rendering, 2010: 81–90.http://www.researchgate.net/publication/221523265_Progressive_histogram_reshaping_for_creative_color_transfer_and_tone_reproduction

    [3]

    Reinhard E, Adhikhmin M, Gooch B, et al. Color transfer between images[J]. IEEE Computer Graphics and Applications, 2001, 21(5): 34–41. http://d.old.wanfangdata.com.cn/Periodical/jsjfzsjytxxxb200609009

    [4]

    Pitie F, Kokaram A. The linear Monge-Kantorovitch linear colour mapping for example-based colour transfer[C]//Proceedings of the 4th European Conference on Visual Media Production, 2007.

    [5]

    Evans L C. Partial differential equations and monge-kantorovich mass transfer[J]. Current Developments in Mathematics, 1997, 1997: 65–126. doi: 10.4310/CDM.1997.v1997.n1.a2

    [6]

    Hristova H, Le Meur O, Cozot R, et al. Style-aware robust color transfer[C]//Proceedings of the workshop on Computational Aesthetics, 2015.http://www.researchgate.net/publication/283206715_Style-aware_robust_color_transfer

    [7]

    Abadpour A, Kasaei S. A fast and efficient fuzzy color transfer method[C]//Proceedings of the 4th IEEE International Symposium on Signal Processing and Information Technology, 2004: 491–494.http://www.researchgate.net/publication/4145584_A_fast_and_efficient_fuzzy_color_transfer_method

    [8]

    Tai Y W, Jia J Y, Tang C K. Local color transfer via probabilistic segmentation by expectation-maximization[C]//Proceedings of 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005: 747–754.http://www.researchgate.net/publication/4156245_Local_color_transfer_via_probabilistic_segmentation_by_expectation-maximization

    [9]

    Hristova H, Le Meur O, Cozot R, et al. Transformation of the beta distribution for color transfer[C]//Proceedings of the 13th International Conference on Computer Graphics Theory and Applications, 2018: 112–121.

    [10]

    Agrawal A, Raskar R. Gradient domain manipulation techniques in vision and graphics[C]//Proceedings of the 11th International Conference on Computer Vision, 2007.

    [11]

    Shao F, Lin W S, Li Z T, et al. Toward simultaneous visual comfort and depth sensation optimization for stereoscopic 3-D experience[J]. IEEE Transactions on Cybernetics, 2017, 47(12): 4521–4533. doi: 10.1109/TCYB.2016.2615856

    [12]

    Pascal F, Bombrun L, Tourneret J Y, et al. Parameter estimation for multivariate generalized Gaussian distributions[J]. IEEE Transactions on Signal Processing, 2013, 61(23): 5960–5971. doi: 10.1109/TSP.2013.2282909

    [13]

    Bombrun L, Pascal F, Tourneret J Y, et al. Performance of the maximum likelihood estimators for the parameters of multivariate generalized Gaussian distributions[C]//Proceedings of 2012 IEEE International Conference on Acoustics, Speech and Signal Processing, 2012: 3525–3528.

    [14]

    Hristova H, Le Meur O, Cozot R, et al. Transformation of the multivariate generalized Gaussian distribution for image editing[J]. IEEE Transactions on Visualization and Computer Graphics, 2018, 24(10): 2813–2826. doi: 10.1109/TVCG.2017.2769050

    [15]

    李冰飞.基于RGBD图像的图像分割算法研究[D].合肥: 合肥工业大学, 2016.

    Li B F. The Research on image segmentation algorithms based on RGBD images[D]. Hefei: Hefei University of Technology, 2016.http://cdmd.cnki.com.cn/Article/CDMD-10359-1016124428.htm

    [16]

    Lang M, Hornung A, Wang O, et al. Nonlinear disparity mapping for stereoscopic 3D[J]. ACM Transactions on Graphics, 2010, 29(4): 75. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC0211392467

    [17]

    Sun D Q, Roth S, Black M J. Secrets of optical flow estimation and their principles[C]//Proceedings of 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2010: 2432–2439.http://www.researchgate.net/publication/45174916_Secrets_of_optical_flow_estimation_and_their_principles

    [18]

    Shamir A, Sorkine O. Visual media retargeting[C]//ACM SIGGRAPH ASIA 2009 Courses, 2009: 1–13.http://www.researchgate.net/publication/220721568_Visual_media_retargeting

    [19]

    Pitié F, Kokaram A C, Dahyot R. Automated colour grading using colour distribution transfer[J]. Computer Vision and Image Understanding, 2007, 107(1–2): 123–137. doi: 10.1016/j.cviu.2006.11.011

    [20]

    Pitie F, Kokaram A C, Dahyot R. N-dimensional probability density function transfer and its application to color transfer[C]//Proceedings of the 10th International Conference on Computer Vision, 2005: 1434–1439.http://www.researchgate.net/publication/4193994_N-dimensional_probability_density_function_transfer_and_its_application_to_color_transfer

  • 加载中

(11)

计量
  • 文章访问数:  5762
  • PDF下载数:  1921
  • 施引文献:  0
出版历程
收稿日期:  2018-08-26
修回日期:  2018-12-19
刊出日期:  2019-09-30

目录

/

返回文章
返回