Liu Xuejun, Wu Jiajun, Qiao Hongchao, et al. The real-time acquisition and analysis software system for laser-induced plasma acoustic wave signal[J]. Opto-Electronic Engineering, 2019, 46(8): 180534. doi: 10.12086/oee.2019.180534
Citation: Liu Xuejun, Wu Jiajun, Qiao Hongchao, et al. The real-time acquisition and analysis software system for laser-induced plasma acoustic wave signal[J]. Opto-Electronic Engineering, 2019, 46(8): 180534. doi: 10.12086/oee.2019.180534

The real-time acquisition and analysis software system for laser-induced plasma acoustic wave signal

    Fund Project: Supported by NSFC-Liaoning Province United Foundation (U1608259), National Natural Science Foundation of China (51501219), National Key Development Program (2016YFB1192704), and National Key Technology Research and Development Program of the Ministry of Science and Technology of China (2015BAF08B01-01)
More Information
  • In order to realize the online detection of laser shock processing and aim at the phenomenon of laser-induced plasma acoustic wave, the SIA-AEDAC-01 acoustic emission acquisition card is used to collect acoustic wave signals. The real-time acquisition and analysis software system for laser-induced plasma acoustic wave signal is studied and designed. The test experiment for feasibility and accuracy of the system is designed. Firstly, the laser-induced plasma acoustic wave signal propagating in air is collected by the online detection laser shock processing system, and then the system gets the laser-induced plasma acoustic wave signal energy. The residual stress of the test pieces after the treatment of laser shock processing was measured by an X-ray stress analyzer to verify the reliability. The experimental results show that the laser-induced plasma acoustic wave signal can be collected and analyzed in real-time by the real-time acquisition and analysis software system, which is designed and developed in this work, and the software system can accurately get the acoustic signal energy. At the same time, both the acoustic wave signal energy and the surface residual stress of the test pieces are increased with the laser energy, and their change curve is consistent. In conclusion, the real-time acquisition and analysis software system for laser-induced plasma acoustic wave signal can satisfy the requirements of online detection of laser shock processing with accurate and reliable performance, and meet the online monitoring requirements of laser shock processing.
  • 加载中
  • [1] 吴嘉俊, 赵吉宾, 乔红超, 等.激光冲击强化技术的应用现状与发展[J].光电工程, 2018, 45(2): 170690. doi: 10.12086/oee.2018.170690

    CrossRef Google Scholar

    Wu J J, Zhao J B, Qiao H C, et al. The application status and development of laser shock processing[J]. Opto-Electronic Engineering, 2018, 45(2): 170690. doi: 10.12086/oee.2018.170690

    CrossRef Google Scholar

    [2] Fabbro R, Fournier J, Ballard P, et al. Physical study of laser-roduced plasma in confined geometry[J]. Journal of Applied Physics, 1990, 68(2): 775-784. doi: 10.1063/1.346783

    CrossRef Google Scholar

    [3] 李松夏, 乔红超, 赵吉宾, 等.激光冲击强化技术原理及研究发展[J].光电工程, 2017, 44(6): 569-576. doi: 10.3969/j.issn.1003-501X.2017.06.001

    CrossRef Google Scholar

    Li S X, Qiao H C, Zhao J B, et al. Research and development of laser shock processing technology[J]. Opto-Electronic Engineering, 2017, 44(6): 569-576. doi: 10.3969/j.issn.1003-501X.2017.06.001

    CrossRef Google Scholar

    [4] 张恭轩, 吴嘉俊, 高宇, 等. TC17钛合金激光冲击强化实验研究[J].表面技术, 2018, 47(3): 96-100.

    Google Scholar

    Zhang G X, Wu J J, Gao Y, et al. Experimental study on laser shock peening of TC17 titanium alloy[J]. Surface Technology, 2018, 47(3): 96-100.

    Google Scholar

    [5] 李应红.激光冲击强化理论与技术[M].北京:科学出版社, 2013.

    Google Scholar

    Li Y H. Theory and Technology of Laser Shock Processing[M]. Beijing: Science Press of China, 2013.

    Google Scholar

    [6] 张永康.激光冲击强化产业化关键问题及应用前景[J].激光与光电子学进展, 2007, 44(3): 74-77.

    Google Scholar

    Zhang Y K. The key issue and application prospect of laser shock processing industrialization[J]. Laser & Optoelectronics Progress, 2007, 44(3): 74-77.

    Google Scholar

    [7] Wu J J, Zhao J B, Qiao H C, et al. Acoustic wave detection of laser shock peening[J]. Opto-Electronic Advances, 2018, 1(9): 180016. doi: 10.29026/oea.2018.180016

    CrossRef Google Scholar

    [8] 马泽祥, 郭兴旺.航空发动机叶片激光冲击强化质量的评估方法[J].无损检测, 2015, 37(10): 81-86. doi: 10.11973/wsjc201510019

    CrossRef Google Scholar

    Ma Z X, Guo X W. Methods of monitoring laser shock peening for aviation engine blade[J]. Nondestructive Testing, 2015, 37(10): 81-86. doi: 10.11973/wsjc201510019

    CrossRef Google Scholar

    [9] Takata T, Enoki M, Chivavibul P, et al. Acoustic emission monitoring of laser shock peening by detection of underwater acoustic wave[J]. Materials Transactions, 2016, 57(5): 674-680. doi: 10.2320/matertrans.M2015401

    CrossRef Google Scholar

    [10] 李未龙, 余立, 汪选国.小孔法测量残余应力[J].武钢技术, 2013, 51(6): 55-59. doi: 10.3969/j.issn.1008-4371.2013.06.017

    CrossRef Google Scholar

    Li W L, Yu L, Wang X G. Test of residual stress by hole drilling strain method[J]. Wisco Technology, 2013, 51(6): 55-59. doi: 10.3969/j.issn.1008-4371.2013.06.017

    CrossRef Google Scholar

    [11] 陈怀宁, 唐延东.小孔法测量残余应力的应力—应变有限元分析[J].机械强度, 1993, 15(3): 21-24.

    Google Scholar

    Chen H N, Tang Y D. Fem analysis of stress-strain for measuring residual stresses with blind-hole method[J]. Journal of Mechanical Strength, 1993, 15(3): 21-24.

    Google Scholar

    [12] 张定铨. X射线应力测定基本知识第一讲残余应力的基本概念[J].理化检验-物理分册, 2007, 43(4): 211-213. doi: 10.3969/j.issn.1001-4012.2007.04.016

    CrossRef Google Scholar

    Zhang D Q. Basic knowledge of stress determination by x-ray—lecture No.1 basic concept of residual stress[J]. Physical Testing and Chemical Analysis (Part: A Physical Testing), 2007, 43(4): 211-213. doi: 10.3969/j.issn.1001-4012.2007.04.016

    CrossRef Google Scholar

    [13] 张定铨.残余应力测定的基本知识第二讲X射线应力测定的基本原理[J].理化检验-物理分册, 2007, 43(5): 263-265. doi: 10.3969/j.issn.1001-4012.2007.05.014

    CrossRef Google Scholar

    Zhang D Q. Basic knowledge of residual stress determination-lecture No. 2 basic concept of stress determination by X-ray[J]. Physical Testing and Chemical Analysis (Part: A Physical Testing), 2007, 43(5): 263-265. doi: 10.3969/j.issn.1001-4012.2007.05.014

    CrossRef Google Scholar

    [14] 杨建风, 周建忠, 冯爱新.激光冲击强化效果的无损检测[J].机床与液压, 2007, 35(5): 160-162. doi: 10.3969/j.issn.1001-3881.2007.05.057

    CrossRef Google Scholar

    Yang J F, Zhou J Z, Feng A X. Non-destructive detection of the effect of laser shock processing[J]. Machine Tool & Hydraulics, 2007, 35(5): 160-162. doi: 10.3969/j.issn.1001-3881.2007.05.057

    CrossRef Google Scholar

    [15] 邹世坤, 曹子文, 杨贺来.激光冲击处理发动机叶片的固有频率测试[J].中国机械工程, 2010, 21(6): 648-651.

    Google Scholar

    Zou S K, Cao Z W, Yang H L. Natural frequency test of turbine blades in laser shock processing[J]. China Mechanical Engineering, 2010, 21(6): 648-651.

    Google Scholar

    [16] Zhao R, Xu R Q, Shen Z H, et al. Dynamics of laser-induced shock wave by optical probe in air[J]. Optik, 2006, 117(7): 299-302. doi: 10.1016/j.ijleo.2005.09.005

    CrossRef Google Scholar

    [17] Aguilera J A, Aragón C. Characterization of laser-induced plasma during its expansion in air by optical emission spectroscopy: observation of strong explosion self-similar behavior[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2014, 97: 86-93. doi: 10.1016/j.sab.2014.04.013

    CrossRef Google Scholar

    [18] 卞保民, 陈建平, 杨玲, 等.空气中激光等离子体冲击波的传输特性研究[J].物理学报, 2000, 49(3): 445-448. doi: 10.3321/j.issn:1000-3290.2000.03.012

    CrossRef Google Scholar

    Bian B M, Chen J P, Yang L, et al. The transmission characteristic of airborne laser plasma shock Wave[J]. Acta Physica Sinica, 2000, 49(3): 445-448. doi: 10.3321/j.issn:1000-3290.2000.03.012

    CrossRef Google Scholar

    [19] 卞保民, 杨玲, 陈笑, 等.激光等离子体及点爆炸空气冲击波波前运动方程的研究[J].物理学报, 2002, 51(4): 809-813. doi: 10.3321/j.issn:1000-3290.2002.04.019

    CrossRef Google Scholar

    Bian B M, Yang L, Chen X, et al. Study of the laser-induced plasmas and the kinematics of shock waves in air by a way intense explosion[J]. Acta Physica Sinica, 2002, 51(4): 809-813. doi: 10.3321/j.issn:1000-3290.2002.04.019

    CrossRef Google Scholar

    [20] Michael D B, David M R, Won S U, et al. Real time laser shock peening quality assurance by natural frequency analysis: 6914215[P]. 2005-07-05.

    Google Scholar

    [21] 梁建民, 杨贺来, 邹世坤.叶片激光冲击强化处理的过程监测[J].新技术新工艺, 2008(2): 82-84. doi: 10.3969/j.issn.1003-5311.2008.02.030

    CrossRef Google Scholar

    Liang J M, Yang H L, Zou S K. The processing monitor for aero-engine blades' laser shock processing[J]. New Technology & New Process, 2008(2): 82-84. doi: 10.3969/j.issn.1003-5311.2008.02.030

    CrossRef Google Scholar

    [22] 杨贺来, 梁建民.叶片激光冲击强化处理质量检测技术研究[J].天津城市建设学院学报, 2010, 16(1): 37-40. doi: 10.3969/j.issn.1006-6853.2010.01.010

    CrossRef Google Scholar

    Yang H L, Liang J M. Research on the quality inspection for blades' laser shock processing[J]. Journal of Tianjin Institute of Urban Construction, 2010, 16(1): 37-40. doi: 10.3969/j.issn.1006-6853.2010.01.010

    CrossRef Google Scholar

    [23] 吴边, 王声波, 郭大浩, 等.强激光冲击铝合金改性处理研究[J].光学学报, 2005, 25(10): 1352-1356. doi: 10.3321/j.issn:0253-2239.2005.10.012

    CrossRef Google Scholar

    Wu B, Wang S B, Guo D H, et al. Research of material modification induced by laser shock processing on aluminum alloy[J]. Acta Optica Sinica, 2005, 25(10): 1352-1356. doi: 10.3321/j.issn:0253-2239.2005.10.012

    CrossRef Google Scholar

    [24] 王飞.基于空气中冲击波辐值和飞行时间的激光冲击强化在线检测试验研究[D].镇江: 江苏大学, 2010.

    Google Scholar

    Wang F. Experimental studies on quality assurance of laser shock processing by the amplitude and time-of-flight of the shock wave in air[D]. Zhenjiang: Jiangsu University, 2010.

    Google Scholar

    [25] 邱辰霖, 程礼, 何卫锋.一种基于数据间相关性的激光喷丸声学监测技术[J]. 振动与冲击, 2017, 36(4): 139-143.

    Google Scholar

    Qiu C L, Cheng L, He W F. A condition monitoring method for laser peening based on the correlation between the adjacent aata[J]. Journal of Vibration and Shock, 2017, 36(4): 139-143.

    Google Scholar

    [26] 乔红超, 赵吉宾.激光冲击强化在线检测系统设计及应用[J].激光与光电子学进展, 2013, 50(7): 071401.

    Google Scholar

    Qiao H C, Zhao J B. Design and implementation of online laser peening detection system[J]. Laser & Optoelectronics Progress, 2013, 50(7): 071401.

    Google Scholar

    [27] 沈功田, 耿荣生, 刘时风.声发射信号的参数分析方法[J].无损检测, 2002, 24(2): 72-77. doi: 10.3969/j.issn.1000-6656.2002.02.008

    CrossRef Google Scholar

    Shen G T, Geng R S, Liu S F. Parameter analysis of acoustic emission signals[J]. Nondestructive Testing, 2002, 24(2): 72-77. doi: 10.3969/j.issn.1000-6656.2002.02.008

    CrossRef Google Scholar

    [28] Bacon D F, Konuru R, Murthy C, et al. Thin locks: featherweight synchronization for Java[J]. ACM SIGPLAN Notices, 2004, 39(4): 583-595. doi: 10.1145/989393.989452

    CrossRef Google Scholar

  • Overview:Laser shock processing (LSP) is an innovative surface treatment technique. It involves irradiation of the thin opaque coating layer with high-energy short-width laser pulses causing instantaneous vaporization of the surface layer into high-temperature high-pressure laser-induced plasma. The expansion of the laser-induced plasma generates high speed compressive shock waves that propagate into the components. Then the metal material is plastically deformed and generates compressive residual stress in the surface. The surface residual compressive stress is generally used to evaluate the effect of the process of LSP. The main methods of measuring surface residual compressive stress are off-line and low efficiency. It is necessary to develop the non-destructive online detection technology of LSP. The correlation analysis showed the laser-induced plasma acoustic waves can comprehensively reflect the parameter characteristics in the process of LSP. The analysis and extraction of the characteristics of acoustic wave can be used for real-time online detection of the LSP. The real-time acquisition and analysis software system for laser-induced plasma acoustic wave signal based on SIA-AEDAC-01 acoustic emission acquisition card is developed in this work to realize the online detection of LSP. Firstly, the laser-induced plasma acoustic wave signal propagating in air is collected and its energy is obtain by the software system. The residual stress of the test pieces after the treatment of LSP was measured by an X-ray stress analyzer to verify the reliability. The experimental results show that the laser-induced plasma acoustic wave signal can be collected and analyzed in real-time by the software system which can accurately get the acoustic signal energy. At the same time, both the acoustic wave signal energy and the surface residual stress of the test pieces are increased with the laser energy, and their change curve is consistent. In conclusion, the software system can satisfy the requirements of online detection of LSP with accurate and reliable performance.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(3)

Article Metrics

Article views(7424) PDF downloads(2406) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint