基于石墨烯的宽带太赫兹可调超表面线偏振转换器

张洪滔, 程用志, 黄木林. 基于石墨烯的宽带太赫兹可调超表面线偏振转换器[J]. 光电工程, 2019, 46(8): 180519. doi: 10.12086/oee.2019.180519
引用本文: 张洪滔, 程用志, 黄木林. 基于石墨烯的宽带太赫兹可调超表面线偏振转换器[J]. 光电工程, 2019, 46(8): 180519. doi: 10.12086/oee.2019.180519
Zhang Hongtao, Cheng Yongzhi, Huang Mulin. Broadband terahertz tunable metasurface linear polarization converter based on graphene[J]. Opto-Electronic Engineering, 2019, 46(8): 180519. doi: 10.12086/oee.2019.180519
Citation: Zhang Hongtao, Cheng Yongzhi, Huang Mulin. Broadband terahertz tunable metasurface linear polarization converter based on graphene[J]. Opto-Electronic Engineering, 2019, 46(8): 180519. doi: 10.12086/oee.2019.180519

基于石墨烯的宽带太赫兹可调超表面线偏振转换器

  • 基金项目:
    湖北省教育厅科研计划重点项目(D20181107)
详细信息
    作者简介:
    通讯作者: 程用志(1984-),男,博士,副教授,主要从事电磁场与微波技术, 电磁超材料/超表面及其相关光电子器件设计与应用的研究。E-mail:chengyz@wust.edu.cn
  • 中图分类号: O436; TN29; TB33

Broadband terahertz tunable metasurface linear polarization converter based on graphene

  • Fund Project: Supported by the Science and Technology Research Project of Education Department of Hubei China (D20181107)
More Information
  • 本文提出了一种基于椭圆形镂空石墨烯的太赫兹宽带可调超表面反射线偏振转换器,通过模拟仿真和法布里-佩罗多重干涉理论进行了验证。设计的超表面模型类似三明治结构,分别由顶层各向异性的椭圆形镂空石墨烯结构、中间介质层和底层金属板组成。仿真结果表明:当给定的石墨烯弛豫时间和费米能级分别为τ=1.0 ps, μc=0.9 eV时,设计的超表面结构偏振转换率(PCR)在0.98 THz~1.34 THz的频率范围内超过90%,相对带宽为36.7%。另外,在谐振频点1.04 THz和1.28 THz,PCR分别高达99.8%和97.7%,这说明设计的超表面可以将入射的垂直(水平)线偏振波转换为反射的水平(垂直)线偏振波。通过法布里-佩罗多重干涉理论进一步验证了该模型,理论预测与数值仿真结果吻合得比较好。此外,设计的超表面反射线偏振转换特性可以通过改变石墨烯的费米能级和电子弛豫时间来动态的调节。因此,设计的基于石墨烯的可调超表面偏振转换器在太赫兹通信、传感以及太赫兹光谱领域具有潜在的应用价值。

  • Overview:In recent years, terahertz science and related technologies have emerged as one of the rapidly evolving technologies, and they have shown good application prospects in the fields of communication, imaging, sensing and non-destructive testing. These applications require not only efficient terahertz sources, but also high-performance terahertz devices such as modulators, polarization converters, and more. At present, there are relatively few materials in nature that can effectively manipulate terahertz waves, and the corresponding devices are quite scarce. In order to promote the application of terahertz technology in the above related fields, the effective regulation of terahertz waves is particularly important. Since many applications of terahertz waves are related to their polarization states, terahertz polarization converters that control polarization states have become an important research direction. Conventional terahertz polarization converters are usually made of materials based on grating structure and dispersion, and generally have problems such as narrow frequency band and low efficiency, which greatly limits the practical application range. Therefore, it is very important to design and prepare high performance terahertz polarization control devices. Because graphene has very good optical transparency, adjustable electromagnetic properties and high electron mobility, it can be widely used in the design of optoelectronic devices. In addition, the addition of a bias voltage to the graphene can change its Fermi level and electron relaxation time, thereby achieving dynamic adjustment of its electromagnetic properties. In this paper, a terahertz broadband tunable reflective linear polarization converter based on oval-shape-hollowed graphene metasurface is proposed and verified by simulation and Fabry-Perot multiple interference theory. Our designed metasurface model is similar to a sandwiched structure, which is consisted of the top layer of anisotropic elliptical perforated graphene structure, an intermediate dielectric layer and a metal groundplane. The simulation results show that when the given graphene relaxation time and Fermi energy are τ=1 ps and μc=0.9 eV, respectively, the polarization conversion rate (PCR) of the designed metasurface structure is over 90% in the frequency range of 0.98 THz~1.34 THz, and the relative bandwidth is 36.7%. In addition, at resonance frequencies of 1.04 THz and 1.29 THz, PCR is up to 99.8% and 97.7%, respectively, indicating that the metasurface we designed can convert incident vertical (horizontal) linearly polarized waves into reflected horizontal (vertical) linearly polarized waves. We used the Fabry-Perot multi-interference theory to further verify the metasurface model. The theoretical predictions are in good agreement with the numerical simulation results. In addition, the designed metasurface reflective linear polarization conversion characteristics can be dynamically adjusted by changing the Fermi energy and electron relaxation time of graphene. Therefore, our designed graphene-based tunable metasurface polarization converter is expected to have potential application value in terahertz communication, sensing and terahertz spectroscopy.

  • 加载中
  • 图 1  超表面的设计方案。(a),(b)单元结构的正视图和立体视图;(c)三维(3D)阵列结构

    Figure 1.  The design scheme of the metasurface. (a), (b) The front and perspective views of the unit-cell structure; (c) Three dimen-sional (3D) array structure

    图 2  在固定的驰豫时间τ=1.0 ps时不同μc下电导率的(a)实部和(b)虚部

    Figure 2.  The (a) real part and (b) imaginary part of the conductivity with fixed relaxation time τ=1.0 ps under different μc

    图 3  在固定的化学势μc=0.9 eV时不同τ下电导率的(a)实部和(b)虚部

    Figure 3.  The (a) real part and (b) imaginary part of the conductivity with fixed μc=0.9 eV under different τ

    图 4  设计的超表面在τ=1.0 ps, μc=0.9 eV下仿真的(a)反射系数和(b)偏振转换率

    Figure 4.  The simulated reflection coefficients (a) and γx(y) (b) of the designed metasurface with τ =1.0 ps, μc=0.9 eV

    图 5  (a) 线偏振波与超表面单元结构相互作用后的电场矢量分解示意图;(b), (c)分别为表层结构在谐振频点1.04 THz和1.28 THz处的表面电流密度分布。其中黑色的粗线箭头表示电流流动方向

    Figure 5.  (a) Schematic diagram of electric field vector decomposition after interaction of linearly polarized waves and unit-cell structure of metasurface; (b), (c) are the surface current density distributions of front layer surface structures at resonance frequencies of 1.04 THz and 1.28 THz, respectively. Where the thick black arrow indicates the direction of current flow

    图 6  在法布里-佩罗谐振腔中x轴偏振波传播的示意图

    Figure 6.  Schematic sketch of the x-pol. wave propagation in a Fabry-Perot like resonance cavity

    图 7  设计的超表面在τ=1.0 ps, μc=0.9 eV时正入射x轴偏振波的仿真和计算得到的(a)反射系数和(b)偏振转换效率(γx)

    Figure 7.  The simulated and calculated (a) reflection coefficients and (b) γx of the designed metasurface with τ=1.0 ps, μc=0.9 eV under normal incident x-pol. wave

    图 8  设计的超表面在固定的驰豫时间τ =1.0 ps时正入射x轴偏振波下不同μc时的(a)仿真和(b)计算得到的偏振转换效率(γx)

    Figure 8.  The (a) simulated and (b) calculated γx of the designed metasurface with fixed relaxation time τ =1.0 psand different μc under normal incident -pol. wave

    图 9  设计的超表面在固定的费米能级μc=0.9 eV时正入射x轴偏振波下不同τ时的(a)仿真和(b)计算得到的偏振转换效率(γx)

    Figure 9.  The (a) simulated and (b) calculated γx of the designed metasurface with the fixed μc=0.9 eV and different τ under normal incident x-pol. wave

  • [1]

    刘丰, 朱忠博, 崔万照.空间太赫兹信息技术展望[J].微波学报, 2013, 29(2): 1–6. http://d.old.wanfangdata.com.cn/Periodical/wbxb201302001

    Liu F, Zhu Z B, Cui W Z. Prospects on space THz information techniques[J]. Journal of Microwaves, 2013, 29(2): 1–6. http://d.old.wanfangdata.com.cn/Periodical/wbxb201302001

    [2]

    Ferguson B, Zhang X C. Materials for terahertz science and technology[J]. Nature Materials, 2002, 1(1): 26–33. http://en.cnki.com.cn/Article_en/CJFDTOTAL-WLZZ200305002.htm

    [3]

    Karpowicz N, Zhang X C. Coherent terahertz echo of tunnel ionization in gases[J]. Physical Review Letters, 2009, 102(9): 093001. doi: 10.1103/PhysRevLett.102.093001

    [4]

    Saeedkia D. Handbook of Terahertz Technology for Imaging, Sensing and Communications[M]. England: Woodhead Publishing, 2013: 641–662.

    [5]

    贾宇轩, 范琦, 王云飞.基于超表面全息的多焦点透镜[J].光电工程, 2017, 44(7): 670–675. doi: 10.3969/j.issn.1003-501X.2017.07.002

    Jia Y X, Fan Q, Wang Y F. Multi-focus lens based on metasurface holography[J]. Opto-Electronic Engineering, 2017, 44(7): 670–675. doi: 10.3969/j.issn.1003-501X.2017.07.002

    [6]

    Chen C Y, Tsai T R, Pan C L, et al. Room temperature terahertz phase shifter based on magnetically controlled birefringence in liquid crystals[J]. Applied Physics Letters, 2003, 83(22): 4497–4499. doi: 10.1063/1.1631064

    [7]

    Rutz F, Hasek T, Koch M, et al. Terahertz birefringence of liquid crystal polymers[J]. Applied Physics Letters, 2006, 89(22): 221911. doi: 10.1063/1.2397564

    [8]

    Yamada I, Takano K, Hangyo M, et al. Terahertz wire-grid polarizers with micrometer-pitch Al gratings[J]. Optics Letters, 2009, 34(3): 274–276. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4a188ed461ea7fbd8933dedb7846fac9

    [9]

    Liu Y M, Zhang X. Metamaterials: a new frontier of science and technology[J]. Chemical Society Reviews, 2011, 40(5): 2494–2507. doi: 10.1039/c0cs00184h

    [10]

    Pu M B, Chen P, Wang Y Q, et al. Anisotropic meta-mirror for achromatic electromagnetic polarization manipulation[J]. Applied Physics Letters, 2013, 102(13): 131906. doi: 10.1063/1.4799162

    [11]

    Guo Y H, Yan L S, Pan W, et al. Achromatic polarization manipulation by dispersion management of anisotropic meta-mirror with dual-metasurface[J]. Optics Express, 2015, 23(21): 27566–27575. doi: 10.1364/OE.23.027566

    [12]

    Guo Y H, Wang Y Q, Pu M B, et al. Dispersion management of anisotropic metamirror for super-octave bandwidth polarization conversion[J]. Scientific Reports, 2015, 5: 8434. doi: 10.1038/srep08434

    [13]

    Zhu J F, Li S F, Deng L, et al. Broadband tunable terahertz polarization converter based on a sinusoidally-slotted graphene metamaterial[J]. Optical Materials Express, 2018, 8(5): 1164–1173. doi: 10.1364/OME.8.001164

    [14]

    唐雨竹, 马文英, 魏耀华, 等.一种旋转可调的太赫兹超材料及其传感特性[J].光电工程, 2017, 44(4): 453–457. doi: 10.3969/j.issn.1003-501X.2017.04.010

    Tang Y Z, Ma W Y, Wei Y H, et al. A tunable terahertz metamaterial and its sensing performance[J]. Opto-Electronic Engineering, 2017, 44(4): 453–457. doi: 10.3969/j.issn.1003-501X.2017.04.010

    [15]

    Yang C, Luo Y, Guo J X, et al. Wideband tunable mid-infrared cross polarization converter using rectangle-shape perforated graphene[J]. Optics Express, 2016, 24(15): 16913–16922. doi: 10.1364/OE.24.016913

    [16]

    Chen M, Chang L Z, Gao X, et al. Wideband tunable cross polarization converter based on a graphene metasurface with a hollow-carved "H" array[J]. IEEE Photonics Journal, 2017, 9(5): 4601011. doi: 10.1109/JPHOT.2017.2734915

    [17]

    Dai Y M, Ren W Z, Cai H B, et al. Realizing full visible spectrum metamaterial half-wave plates with patterned metal nanoarray/insulator/metal film structure[J]. Optics Express, 2014, 22(7): 7465–7472. doi: 10.1364/OE.22.007465

    [18]

    Glybovski S B, Tretyakov S A, Belov P A, et al. Metasurfaces: from microwaves to visible[J]. Physics Reports, 2016, 634: 1–72. doi: 10.1016/j.physrep.2016.04.004

    [19]

    Cong L Q, Cao W, Zhang X Q, et al. A perfect metamaterial polarization rotator[J]. Applied Physics Letters, 2013, 103(17): 171107. doi: 10.1063/1.4826536

    [20]

    Cheng Y Z, Withayachumnankul W, Upadhyay A, et al. Ultrabroadband reflective polarization convertor for terahertz waves[J]. Applied Physics Letters, 2014, 105(18): 181111. doi: 10.1063/1.4901272

    [21]

    Liu W W, Chen S Q, Li Z C, et al. Realization of broadband cross-polarization conversion in transmission mode in the terahertz region using a single-layer metasurface[J]. Optics Letters, 2015, 40(13): 3185–3188. doi: 10.1364/OL.40.003185

    [22]

    Li C Y, Chang C C, Zhou Q L, et al. Resonance coupling and polarization conversion in terahertz metasurfaces with twisted split-ring resonator pairs[J]. Optics Express, 2017, 25(21): 25842–25852. doi: 10.1364/OE.25.025842

    [23]

    付亚男, 张新群, 赵国忠, 等.基于谐振环的太赫兹宽带偏振转换器件研究[J].物理学报, 2017, 66(18): 62–71. doi: 10.7498/aps.66.180701

    Fu Y N, Zhang X Q, Zhao G Z, et al. A broadband polarization converter based on resonant ring in terahertz region[J]. Acta Physica Sinica, 2017, 66(18): 62–71. doi: 10.7498/aps.66.180701

    [24]

    Zhao J C, Cheng Y Z, Cheng Z Z. Design of a photo-excited switchable broadband reflective linear polarization conversion metasurface for terahertz waves[J]. IEEE Photonics Journal, 2018, 10(1): 4600210. doi: 10.1109/jphot.2018.2792444

    [25]

    Geim A K. Graphene: status and prospects[J]. Science, 2009, 324(5934): 1530–1534. doi: 10.1126/science.1158877

    [26]

    Hanson G W. Dyadic Green's functions and guided surface waves for a surface conductivity model of graphene[J]. Journal of Applied Physics, 2008, 103(6): 064302. doi: 10.1063/1.2891452

    [27]

    Geim A K, Novoselov K S. The rise of graphene[J]. Nature Materials, 2007, 6(3): 183–191. doi: 10.1038/nmat1849

    [28]

    Gan C H, Chu H S, Li E P. Synthesis of highly confined surface Plasmon modes with doped graphene sheets in the midinfrared and terahertz frequencies[J]. Physical Review B, 2012, 85(12): 125431. doi: 10.1103/PhysRevB.85.125431

    [29]

    Zhao J C, Cheng Y Z. A high-efficiency and broadband reflective 90° linear polarization rotator based on anisotropic metamaterial[J]. Applied Physics B, 2016, 122(10): 255. doi: 10.1007/s00340-016-6533-6

    [30]

    Fang C, Cheng Y Z, He Q Z, et al. Design of a wideband reflective linear polarization converter based on the ladder-shaped structure metasurface[J]. Optik, 2017, 137: 148–155. doi: 10.1016/j.ijleo.2017.03.002

    [31]

    Xia R, Jing X F, Gui X C, et al. Broadband terahertz half-wave plate based on anisotropic polarization conversion metamaterials[J]. Optical Materials Express, 2017, 7(3): 977–988. doi: 10.1364/OME.7.000977

    [32]

    Falkovsky L A. Optical properties of graphene[J]. Journal of Physics: Conference Series, 2008, 129(1): 012004. doi: 10.1088/1742-6596/129/1/012004

    [33]

    Huang M L, Cheng Y Z, Cheng Z Z, et al. Based on graphene tunable dual-band terahertz metamaterial absorber with wide-angle[J]. Optics Communications, 2018, 415: 194–201. doi: 10.1016/j.optcom.2018.01.051

    [34]

    Zhu B F, Ren G B, Zheng S W, et al. Nanoscale dielectric-graphene-dielectric tunable infrared waveguide with ultrahigh refractive indices[J]. Optics Express, 2013, 21(14): 17089–17096. doi: 10.1364/OE.21.017089

    [35]

    Vakil A, Engheta N. Transformation optics using graphene[J]. Science, 2011, 332(6035): 1291–1294. doi: 10.1126/science.1202691

    [36]

    Hao J M, Yuan Y, Ran L X, et al. Manipulating electromagnetic wave polarizations by anisotropic metamaterials[J]. Physical Review Letters, 2007, 99(6): 063908. doi: 10.1103/PhysRevLett.99.063908

    [37]

    Grady N K, Heyes J E, Chowdhury D R, et al. Terahertz metamaterials for linear polarization conversion and anomalous refraction[J]. Science, 2013, 340(6138): 1304–1307. doi: 10.1126/science.1235399

    [38]

    Gao X, Han X, Cao W P, et al. Ultrawideband and high-efficiency linear polarization converter based on double V-Shaped metasurface[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(8): 3522–3530. doi: 10.1109/TAP.2015.2434392

    [39]

    Cheng Y Z, Fang C, Mao X S, et al. Design of an ultrabroadband and high-efficiency reflective linear polarization convertor at optical frequency[J]. IEEE Photonics Journal, 2016, 8(6): 7805509. doi: 10.1109/JPHOT.2016.2624559

    [40]

    Tang J Y, Xiao Z Y, Xu K K, et al. Cross polarization conversion based on a new chiral spiral slot structure in THz region[J]. Optical and Quantum Electronics, 2016, 48(2): 111. doi: 10.1007/s11082-016-0407-3

    [41]

    李雄, 马晓亮, 罗先刚.超表面相位调控原理及应用[J].光电工程, 2017, 44(3): 255–275. doi: 10.3969/j.issn.1003-501X.2017.03.001

    Li X, Ma X L, Luo X G. Principles and applications of metasurfaces with phase modulation[J]. Opto-Electronic Engineering, 2017, 44(3): 255–275. doi: 10.3969/j.issn.1003-501X.2017.03.001

  • 加载中

(9)

计量
  • 文章访问数:  9648
  • PDF下载数:  3815
  • 施引文献:  0
出版历程
收稿日期:  2018-09-05
修回日期:  2018-11-06
刊出日期:  2019-08-01

目录

/

返回文章
返回