Abstract:
An oblique incidence dynamic phase-shifting interferometer based on inclination angle deflection is proposed to quickly obtain the surface distribution of optical surface with flatness of micron dimension. A 2×2 point source array is introduced into a Michelson interference system, and the incidence angle of each point source on the interferometer cavity is adjusted precisely to induce equal phase shift. Spatial separation is realized in combination with a lens array. The four phase-shifting interferograms are captured simultaneously on a single CCD, thereby realizing dynamic measurement. The flatness of a 35 mm aperture silicon wafer is measured at oblique incidence angle of 68°, the root mean square (RMS) is 1.631 μm and peak-to-valley (PV) is 9.082 μm. The experimental results indicate that the proposed interferometer overcomes the disturbance of vibration environment and extends the measurement range of interferometer with high precision by introducing the simultaneous phase-shifting interferometry based on inclination angle deflection into the oblique incidence interference system.