Deng Honglang, Zhou Shaolin, Cen Guanting. Progress on infrared and terahertz electro-magnetic absorptive metasurface[J]. Opto-Electronic Engineering, 2019, 46(8): 180666. doi: 10.12086/oee.2019.180666
Citation: Deng Honglang, Zhou Shaolin, Cen Guanting. Progress on infrared and terahertz electro-magnetic absorptive metasurface[J]. Opto-Electronic Engineering, 2019, 46(8): 180666. doi: 10.12086/oee.2019.180666

Progress on infrared and terahertz electro-magnetic absorptive metasurface

    Fund Project: Supported by the Pearl River Nova Program of Guangzhou (201710010058) and the Fundamental Research Funds for the Central Universities of South China University of Technology (2018MS16)
More Information
  • The metasurface is an ultra-thin two-dimensional planar array that enables multi-functional and extraordinary electro-magnetic control. It consists of structural units of metamaterials which can flexibly and effectively control the phase, polarization mode and propagation mode of electromagnetic waves. Therefore, it shows great potentials and prospects in various applications including the controllable "smart" surfaces, novel waveguide structures, electromagnetic wave absorption and the miniaturized cavity resonators. In this review, we first introduce basic concepts and background of metasurfaces, and then summarize the design and development of several absorptive metasurface devices in the infrared & terahertz (THz) bands and finally discuss its potential problems and prospective in future.
  • 加载中
  • [1] 张健, 张文彦, 奚正平.隐身吸波材料的研究进展[J].稀有金属材料与工程, 2008, 37(S4): 504-508.

    Google Scholar

    Zhang J, Zhang W Y, Xi Z P. Development of stealth radarwave absorbing materials[J]. Rare Metal Materials and Engineering, 2008, 37(S4): 504-508.

    Google Scholar

    [2] 杨长胜, 程海峰, 李效东, 等.智能隐身材料的研究现状[J].功能材料, 2005, 36(5): 643-647. doi: 10.3321/j.issn:1001-9731.2005.05.001

    CrossRef Google Scholar

    Yang C S, Cheng H F, Li X D, et al. Present status of intelligent stealth material[J]. Journal of Functional Materials, 2005, 36(5): 643-647. doi: 10.3321/j.issn:1001-9731.2005.05.001

    CrossRef Google Scholar

    [3] Nemati A, Wang Q, Hong M H, et al. Tunable and reconfigurable metasurfaces and metadevices[J]. Opto-Electronic Advances, 2018, 1(5): 180009. doi: 10.29026/oea.2018.180009

    CrossRef Google Scholar

    [4] Pendry J B, Holden A J, Robbins D J, et al. Magnetism from conductors and enhanced nonlinear phenomena[J]. IEEE Transactions on Microwave Theory and Techniques, 1999, 47(11): 2075-2084. doi: 10.1109/22.798002

    CrossRef Google Scholar

    [5] Schurig D, Mock J J, Justice B J, et al. Metamaterial electro- magnetic cloak at microwave frequencies[J]. Science, 2006, 314(5801): 977-980. doi: 10.1126/science.1133628

    CrossRef Google Scholar

    [6] Karvounis A, Gholipour B, MacDonald K F, et al. All-dielectric phase-change reconfigurable metasurface[J]. Applied Physics Letters, 2016, 109(5): 051103. doi: 10.1063/1.4959272

    CrossRef Google Scholar

    [7] Aieta F, Genevet P, Kats M A, et al. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces[J]. Nano Letters, 2012, 12(9): 4932-4936. doi: 10.1021/nl302516v

    CrossRef Google Scholar

    [8] West P R, Stewart J L, Kildishev A V, et al. All-dielectric subwavelength metasurface focusing lens[J]. Optics Express, 2014, 22(21): 26212-26221. doi: 10.1364/OE.22.026212

    CrossRef Google Scholar

    [9] Holloway C L, Kuester E F, Gordon J A, et al. An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials[J]. IEEE Antennas and Propagation Magazine, 2012, 54(2): 10-35. doi: 10.1109/map.2012.6230714

    CrossRef Google Scholar

    [10] Caniou J. Passive Infrared Detection: Theory and Applications[M]. New York: Springer, 1999: 225.

    Google Scholar

    [11] Jiang X D, Itzler M A, Ben-Michael R, et al. InGaAsP-InP avalanche photodiodes for single photon detection[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(4): 895-905. doi: 10.1109/JSTQE.2007.903001

    CrossRef Google Scholar

    [12] Wang J L, Fang H H, Wang X D, et al. Recent progress on localized field enhanced two‐dimensional material photodetectors from ultraviolet-visible to infrared[J]. Small, 2017, 13(35): 1700894. doi: 10.1002/smll.201700894

    CrossRef Google Scholar

    [13] 吴国安, 罗林保.近红外光电探测器的发展与应用[J].物理, 2018, 47(3): 137-142.

    Google Scholar

    Wu G A, Luo L B. Development and application of near infrared photodetectors[J]. Physics, 2018, 47(3): 137-142.

    Google Scholar

    [14] 于宏岩, 张强, 付淑芳, 等.超表面吸收特性的研究进展[J].哈尔滨师范大学自然科学学报, 2017, 33(6): 33-38. doi: 10.3969/j.issn.1000-5617.2017.06.008

    CrossRef Google Scholar

    Yu H Y, Zhang Q, Fu S F, et al. Research advances of absorption properties of metasurfaces[J]. Natural Science Journal of Harbin Normal University, 2017, 33(6): 33-38. doi: 10.3969/j.issn.1000-5617.2017.06.008

    CrossRef Google Scholar

    [15] Yoon G, So S, Kim M, et al. Electrically tunable metasurface perfect absorber for infrared frequencies[J]. Nano Convergence, 2017, 4(1): 36. doi: 10.1186/s40580-017-0131-0

    CrossRef Google Scholar

    [16] Chen H T, Taylor A J, Yu N F. A review of metasurfaces: physics and applications[J]. Reports on Progress in Physics, 2016, 79(7): 076401. doi: 10.1088/0034-4885/79/7/076401

    CrossRef Google Scholar

    [17] Chen K, Adato R, Altug H. Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy[J]. ACS Nano, 2012, 6(9): 7998-8006. doi: 10.1021/nn3026468

    CrossRef Google Scholar

    [18] Astorino M D, Frezza F, Tedeschi N. Ultra-thin narrow-band, complementary narrow-band, and dual-band metamaterial absorbers for applications in the THz regime[J]. Journal of Applied Physics, 2017, 121(6): 063103. doi: 10.1063/1.4975687

    CrossRef Google Scholar

    [19] Feng Q, Pu M B, Hu C G, et al. Engineering the dispersion of metamaterial surface for broadband infrared absorption[J]. Optics Letters, 2012, 37(11): 2133-2135. doi: 10.1364/OL.37.002133

    CrossRef Google Scholar

    [20] Guo W L, Liu Y X, Han T C. Ultra-broadband infrared metasurface absorber[J]. Optics Express, 2016, 24(18): 20586-20592. doi: 10.1364/OE.24.020586

    CrossRef Google Scholar

    [21] Garnett E, Yang P D. Light trapping in silicon nanowire solar cells[J]. Nano Letters, 2010, 10(3): 1082-1087. doi: 10.1021/nl100161z

    CrossRef Google Scholar

    [22] Jeong S, McDowell M T, Cui Y. Low-temperature self-catalytic growth of tin oxide nanocones over large areas[J]. ACS Nano, 2011, 5(7): 5800-5807. doi: 10.1021/nn2015216

    CrossRef Google Scholar

    [23] Zhu J, Hsu C M, Yu Z F, et al. Nanodome solar cells with efficient light management and self-cleaning[J]. Nano Letters, 2010, 10(6): 1979-1984. doi: 10.1021/nl9034237

    CrossRef Google Scholar

    [24] Pu M B, Hu C G, Wang M, et al. Design principles for infrared wide-angle perfect absorber based on plasmonic structure[J]. Optics Express, 2011, 19(18): 17413-17420. doi: 10.1364/OE.19.017413

    CrossRef Google Scholar

    [25] Ullah H, Khan A D, Noman M, et al. Novel multi-broadband plasmonic absorber based on a metal-dielectric-metal square ring array[J]. Plasmonics, 2018, 13(2): 591-597. doi: 10.1007/s11468-017-0549-6

    CrossRef Google Scholar

    [26] Li W, Guler U, Kinsey N, et al. Refractory plasmonics with titanium nitride: broadband metamaterial absorber[J]. Advanced Materials, 2014, 26(47): 7959-7965. doi: 10.1002/adma.201401874

    CrossRef Google Scholar

    [27] Huo D W, Zhang J W, Wang Y C, et al. Broadband perfect absorber based on tin-nanocone metasurface[J]. Nanomaterials, 2018, 8(7): 485. doi: 10.3390/nano8070485

    CrossRef Google Scholar

    [28] Deng H X, Li Z G, Stan L, et al. Broadband perfect absorber based on one ultrathin layer of refractory metal[J]. Optics Letters, 2015, 40(11): 2592-2595. doi: 10.1364/OL.40.002592

    CrossRef Google Scholar

    [29] Chirumamilla M, Roberts A S, Ding F, et al. Multilayer tungsten-alumina-based broadband light absorbers for high-temperature applications[J]. Optical Materials Express, 2016, 6(8): 2704-2714. doi: 10.1364/OME.6.002704

    CrossRef Google Scholar

    [30] Aalizadeh M, Khavasi A, Butun B, et al. Large-area, cost-effective, ultra-broadband perfect absorber utilizing manganese in metal-insulator-metal structure[J]. Scientific Reports, 2018, 8(1): 9162. doi: 10.1038/s41598-018-27397-y

    CrossRef Google Scholar

    [31] Liu H W, Lu J P, Wang X R. Metamaterials based on the phase transition of VO2[J]. Nanotechnology, 2017, 29(2): 024002. doi: 10.1088/1361-6528/aa9cb1

    CrossRef Google Scholar

    [32] Tabata H. Application of terahertz wave technology in the biomedical field[J]. IEEE Transactions on Terahertz Science and Technology, 2015, 5(6): 1146-1153.

    Google Scholar

    [33] Davies A G, Burnett A D, Fan W H, et al. Terahertz spectroscopy of explosives and drugs[J]. Materialstoday, 2008, 11(3): 18-26. doi: 10.1016/s1369-7021(08)70016-6

    CrossRef Google Scholar

    [34] Tonouchi M. Cutting-edge terahertz technology[J]. Nature Photonics, 2007, 1(2): 97-105. doi: 10.1038/nphoton.2007.3

    CrossRef Google Scholar

    [35] Sensale-Rodriguez B, Yan R S, Kelly M M, et al. Broadband graphene terahertz modulators enabled by intraband transitions[J]. Nature Communications, 2012, 3: 780. doi: 10.1038/ncomms1787

    CrossRef Google Scholar

    [36] Huang X J, Zhang X, Hu Z R, et al. Design of broadband and tunable terahertz absorbers based on graphene metasurface: equivalent circuit model approach[J]. IET Microwaves, Antennas & Propagation, 2015, 9(4): 307-312.

    Google Scholar

    [37] Li X W, Liu H J, Sun Q B, et al. Ultra-broadband and polarization-insensitive wide-angle terahertz metamaterial absorber[J]. Photonics and Nanostructures-Fundamentals and Applications, 2015, 15: 81-88. doi: 10.1016/j.photonics.2015.04.002

    CrossRef Google Scholar

    [38] Pu M B, Wang M, Hu C G, et al. Engineering heavily doped silicon for broadband absorber in the terahertz regime[J]. Optics Express, 2012, 20(23): 25513-25519. doi: 10.1364/OE.20.025513

    CrossRef Google Scholar

    [39] Pu M B, Li X, Ma X L, et al. Catenary optics for achromatic generation of perfect optical angular momentum[J]. Science Advances, 2015, 1(9): e1500396. doi: 10.1126/sciadv.1500396

    CrossRef Google Scholar

    [40] Huang Y J, Luo J, Pu M B, et al. Catenary electromagnetics for ultra‐broadband lightweight absorbers and large‐scale flat antennas[J]. Advanced Science, 2019, 6(7): 1801691. doi: 10.1002/advs.201801691

    CrossRef Google Scholar

    [41] 李雄, 马晓亮, 罗先刚.超表面相位调控原理及应用[J].光电工程, 2017, 44(3): 255-275. doi: 10.3969/j.issn.1003-501X.2017.03.001

    CrossRef Google Scholar

    Li X, Ma X L, Luo X G. Principles and applications of metasurfaces with phase modulation[J]. Opto-Electronic Engineering, 2017, 44(3): 255-275. doi: 10.3969/j.issn.1003-501X.2017.03.001

    CrossRef Google Scholar

    [42] Zhang M, Zhang F, Ou Y, et al. Broadband terahertz absorber based on dispersion-engineered catenary coupling in dual metasurface[J]. Nanophotonics, 2018, 8(1): 117-125. doi: 10.1515/nanoph-2018-0110

    CrossRef Google Scholar

    [43] Chen H T, O'Hara J F, Azad A K, et al. Experimental demonstration of frequency-agile terahertz metamaterials[J]. Nature Photonics, 2008, 2(5): 295-298. doi: 10.1038/nphoton.2008.52

    CrossRef Google Scholar

    [44] Dicken M J, Aydin K, Pryce I M, et al. Frequency tunable near-infrared metamaterials based on VO2 phase transition[J]. Optics Express, 2009, 17(20): 18330-18339. doi: 10.1364/OE.17.018330

    CrossRef Google Scholar

    [45] Cao T, Zhang L, Simpson R E, et al. Mid-infrared tunable polarization-independent perfect absorber using a phase-change metamaterial[J]. Journal of the Optical Society of America B, 2013, 30(6): 1580-1585. doi: 10.1364/JOSAB.30.001580

    CrossRef Google Scholar

    [46] Cao T, Wei C W, Simpson R E, et al. Rapid phase transition of a phase-change metamaterial perfect absorber[J]. Optical Materials Express, 2013, 3(8): 1101-1110. doi: 10.1364/OME.3.001101

    CrossRef Google Scholar

    [47] Geim A K, Novoselov K S. The rise of graphene[J]. Nature Materials, 2007, 6(3): 183-191.

    Google Scholar

    [48] Xiao S Y, Wang T, Liu Y B, et al. Tunable light trapping and absorption enhancement with graphene ring arrays[J]. Physical Chemistry Chemical Physics, 2016, 18(38): 26661-26669. doi: 10.1039/C6CP03731C

    CrossRef Google Scholar

    [49] Liu T T, Yi Z, Xiao S Y. Active control of near-field coupling in a terahertz metal-graphene metamaterial[J]. IEEE Photonics Technology Letters, 2017, 29(22): 1998-2001. doi: 10.1109/LPT.2017.2759143

    CrossRef Google Scholar

    [50] Xiao S Y, Wang T, Liu T T, et al. Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials[J]. Carbon, 2018, 126: 271-278. doi: 10.1016/j.carbon.2017.10.035

    CrossRef Google Scholar

    [51] Neto A H C, Guinea F, Peres N, et al. The electronic properties of graphene[J]. Review of Modern Physics, 2009, 81(5934): 109.

    Google Scholar

    [52] Cao S, Wang T S, Sun Q, et al. Graphene-silver hybrid metamaterial for tunable and high absorption at mid-infrared waveband[J]. IEEE Photonics Technology Letters, 2018, 30(5): 475-478. doi: 10.1109/LPT.2018.2800729

    CrossRef Google Scholar

    [53] 田小永, 尹丽仙, 李涤尘.三维超材料制造技术现状与趋势[J].光电工程, 2017, 44(1): 69-76. doi: 10.3969/j.issn.1003-501X.2017.01.006

    CrossRef Google Scholar

    Tian X Y, Yin L X, Li D C. Current situation and trend of f abrication technologies f or three-dimensional metamaterials[J]. Opto-Electronic Engineering, 2017, 44(1): 69-76. doi: 10.3969/j.issn.1003-501X.2017.01.006

    CrossRef Google Scholar

    [54] Chen M, Chang L Z, Gao X, et al. Wideband tunable cross polarization converter based on a graphene metasurface with a hollow-carved "H" array[J]. IEEE Photonics Journal, 2017, 9(5): 4601011. doi: 10.1109/JPHOT.2017.2734915

    CrossRef Google Scholar

    [55] Ziolkowski R W, Jin P, Lin C C. Metamaterial-inspired engineering of antennas[J]. Proceedings of the IEEE, 2011, 99(10): 1720-1731. doi: 10.1109/JPROC.2010.2091610

    CrossRef Google Scholar

    [56] Ibraheem I A, Koch M. Coplanar waveguide metamaterials: the role of bandwidth modifying slots[J]. Applied Physics Letters, 2007, 91(11): 113517. doi: 10.1063/1.2784965

    CrossRef Google Scholar

    [57] Fang X, MacDonald K F, Zheludev N I. Controlling light with light using coherent metadevices: all-optical transistor, summator and invertor[J]. Light: Science & Applications, 2015, 4(5): e292. doi: 10.1038/lsa.2015.65

    CrossRef Google Scholar

    [58] Pu M B, Feng Q, Wang M, et al. Ultrathin broadband nearly perfect absorber with symmetrical coherent illumination[J]. Optics Express, 2012, 20(3): 2246-2254. doi: 10.1364/OE.20.002246

    CrossRef Google Scholar

    [59] Luo X G. Subwavelength optical engineering with metasurface waves[J]. Advanced Optical Materials, 2018, 6(7): 1701201. doi: 10.1002/adom.201701201

    CrossRef Google Scholar

    [60] Li X, Chen L W, Li Y, 等.超表面三维彩色全息[J].光电工程, 2017, 44(1): 2. doi: 10.1126/sciadv.1601102

    CrossRef Google Scholar

    Li X, Chen L W, Li Y, et al. Multicolor 3D meta-holography by broadband plasmonic modulation[J]. Opto-Electronic Engineering, 2017, 44(1): 2. doi: 10.1126/sciadv.1601102

    CrossRef Google Scholar

  • Overview: Infrared photodetectors have been widely used in the fields of military and national economy including aeronautics and astronautics, optical communication, industrial control and so on. The high infrared absorption rate is extremely important for the signal response of the photodetectors. However, the sensitive element of the infrared photodetector does not have good infrared absorption characteristics, so it needs a material that can improve the infrared absorption rate. Among them, metamaterials are widely concerned by researchers because of their novel and non-traditional properties. Metamaterials are typically engineered by arranging a set of small scatterers in a regular array throughout a region of space, thus obtaining some desirable bulk electromagnetic behaviors. The desired property is often the one that is not normally found in nature (negative refractive index, near-zero index, and so on). With the deepening of research, researchers began to expand in the application of metamaterials, and proposed different models, such as metasurfaces, metadevices.

    For many applications, metasurfaces can be used take place of metamaterials. Compared to three-dimensional metamaterial structures, metasurfaces have the advantage of taking up less physical space. Consequently, metasurfaces offer the possibility of realizing less-lossy structures.

    In this review, we describe the research progress of several common absorption metasurfaces in recent years. The first one is the perfect metasurfaces absorber, which has the ability to absorb all incident waves at a single frequency. By optimizing the structural model, the perfect metasurface absorbers achieve impedance matching with free space, and use the dielectric loss and ohmic loss of the structural unit to achieve strong absorption of electromagnetic waves. However, as the result of relying on resonance absorption, the absorption spectrum of perfect metasurface absorbers is very narrow. Then, the metasurfaces of broadband absorption in the infrared, terahertz and visible light bands are reviewed in detail. And the most common way to achieve broadband absorption of metasurfaces is to use a vertically cascaded structure. In addition, metasurfaces can also achieve broadband absorption by combining graphene or catenary optics. Finally, tunability of the PCM metasurface absorber has also been investigated.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(14)

Article Metrics

Article views(12976) PDF downloads(4162) Cited by(0)

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint