Chen Xiaodong, Zhang Jiachen, Pang Weisong, et al. Key technology and application algorithm of intelligent driving vehicle LiDAR[J]. Opto-Electronic Engineering, 2019, 46(7): 190182. doi: 10.12086/oee.2019.190182
Citation: Chen Xiaodong, Zhang Jiachen, Pang Weisong, et al. Key technology and application algorithm of intelligent driving vehicle LiDAR[J]. Opto-Electronic Engineering, 2019, 46(7): 190182. doi: 10.12086/oee.2019.190182

Key technology and application algorithm of intelligent driving vehicle LiDAR

    Fund Project: Supported by Tianjin Science and Technology Plan Fund (17ZXRGGX00140)
More Information
  • With the preparation of intelligent driving into industrialization and commercialization, LiDAR has become an indispensable environmental sensor with its excellent performance and has developed rapidly in hardware technology and related application algorithms. This paper introduces the key technologies of LiDAR hardware by using LiDAR scanning method and related technology as the entry point, discussing the principle, characteristics and current status of mechanical, hybrid and all-solid-state automotive LiDAR. Three kinds of task-oriented vehicle LiDAR application algorithms, point cloud segmentation, target tracking and recognition, simultaneous location and mapping, are summarized. The analysis shows that the vehicle LiDAR will further become solid-state, intelligent and networked in order to reduce costs, improve performance and meet intelligent driving requirements; the pursuit of application algorithm research is real-time, efficient and reliable.
  • 加载中
  • [1] 吕义超, 奚建坡, 陆云.我国激光雷达技术专利信息分析[J].科技创新导报, 2017, 14(20): 244-250.

    Google Scholar

    Lv Y C, Xi J P, Lu Y. Analysis of patent information of lidar technology in China[J]. Science and Technology Innovation Herald, 2017, 14(20): 244-250.

    Google Scholar

    [2] 刘斌, 张军, 鲁敏, 等.激光雷达应用技术研究进展[J].激光与红外, 2015, 45(2): 117-122. doi: 10.3969/j.issn.1001-5078.2015.02.001

    CrossRef Google Scholar

    Liu B, Zhang J, Lu M, et al. Research progress of laser radar applications[J]. Laser & Infrared, 2015, 45(2): 117-122. doi: 10.3969/j.issn.1001-5078.2015.02.001

    CrossRef Google Scholar

    [3] 余莹洁.车载激光雷达的主要技术分支及发展趋势[J].科研信息化技术与应用, 2018, 9(6): 16-24.

    Google Scholar

    Yu Y J. The main technical branches and development trend of vehicle LiDAR[J]. E-Science Technology & Application, 2018, 9(6): 16-24.

    Google Scholar

    [4] Jeff Hecht. Lidar for Self-Driving Cars[J]. Optics & Photonics News, 2018, 29(1):26-33.

    Google Scholar

    [5] 彭江帆.基于车载激光扫描数据的高速公路道路要素提取方法研究[D].北京: 北京建筑大学, 2017: 1-10.

    Google Scholar

    Peng J F. Study on automated extraction methods of highway elements from mobile lidar point clouds[D]. Beijing: Beijing University of Civil Engineering and Architecture, 2017: 1-10.http://cdmd.cnki.com.cn/Article/CDMD-10016-1017169520.htm

    Google Scholar

    [6] 龚书林.三维激光点云处理软件的若干关键技术[J].测绘通报, 2014(6): 135-136.

    Google Scholar

    Gong S L. Several key technologies of 3d laser point cloud processing software[J]. Bulletin of Surveying and Mapping, 2014(6): 135-136.

    Google Scholar

    [7] 何志远.车载三维成像激光雷达系统研究[D].哈尔滨: 哈尔滨工业大学, 2015: 10-32.

    Google Scholar

    He Z Y. Research on 3D imaging laser radar system for vehicle[D]. Harbin: Harbin Institute of Technology, 2015: 10-32.http://cdmd.cnki.com.cn/Article/CDMD-10213-1015981380.htm

    Google Scholar

    [8] 董士军.车载激光雷达系统设计与实验研究[D].南京: 南京理工大学, 2017: 15-44.

    Google Scholar

    Dong S J. Design and experimental research of vehicle laser radar system[D]. Nanjing: Nanjing University of Science & Technology, 2017: 15-44.http://cdmd.cnki.com.cn/Article/CDMD-10288-1017053311.htm

    Google Scholar

    [9] Halterman R, Bruch M. Velodyne HDL-64E LIDAR for unmanned surface vehicle obstacle detection[J]. Proceedings of SPIE, 2010, 7692: 76920D. doi: 10.1117/12.850611

    CrossRef Google Scholar

    [10] 董光焰, 刘中杰.光学MEMS微镜技术及其在激光雷达中的应用[J].中国电子科学研究院学报, 2011, 6(1): 36-38. doi: 10.3969/j.issn.1673-5692.2011.01.009

    CrossRef Google Scholar

    Dong G Y, Liu Z J. MOEMS microlens technique and its application on lidar[J]. Journal of CAEIT, 2011, 6(1): 36-38. doi: 10.3969/j.issn.1673-5692.2011.01.009

    CrossRef Google Scholar

    [11] 吴超, 刘春波, 韩香娥.光波导相控阵激光雷达接收系统设计[J].红外与激光工程, 2016, 45(10): 1030003.

    Google Scholar

    Wu C, Liu C B, Han X E. Design of waveguide optical phased array ladar receiving system[J]. Infrared and Laser Engineering, 2016, 45(10): 1030003.

    Google Scholar

    [12] Velodyne正式推出128线激光雷达VLS-128, 探测距离300米, 分辨率是上一代10倍[EB/OL].(2017-11-30). https://www.leiphone.com/news/201711/qr7O8Q56xIAxfnnX.html.

    Google Scholar

    [13] HALL DAVID S. High definition lidar system: WO2008008970A2[P]. 2008-01-17.

    Google Scholar

    [14] 易建成. Velodyne推出128线激光雷达: 探测距离比64线远一倍, 最高垂直角分辨率达0.17°[EB/OL]. (2017-11-08). https://www.leiphone.com/news/201711/utvihH1L9rAP67GL.html.

    Google Scholar

    Yi J C. Velodyne's 128-line lidar, which measures twice as far as 64, has a maximum vertical resolution of 0.17°[EB/OL]. (2017-11-08). https://www.leiphone.com/news/201711/utvihH1L9rAP67GL.html.

    Google Scholar

    [15] Robot. Quanergy diss行业领头羊Velodyne: 机械激光雷达完全没有商业可行性[EB/OL]. (2018-02-28). http://tech.ifeng.com/a/20180228/44891708_0.shtml.

    Google Scholar

    Robot. Quanergy diss industry leader Velodyne: mechanical lidar is not commercially viable at all[EB/OL]. (2018-02-28). http://tech.ifeng.com/a/20180228/44891708_0.shtml.

    Google Scholar

    [16] 韩意, 孙华燕, 李迎春, 等.国外成像激光雷达系统仿真软件研究进展[J].激光与光电子学进展, 2013, 50(1): 010004.

    Google Scholar

    Han Y, Sun H Y, Li Y C, et al. Advances in foreign simulation softwares of imaging laser radar[J]. Laser & Optoelectronics Progress, 2013, 50(1): 010004.

    Google Scholar

    [17] Siepmann J P, Rybaltowski A. Integrable ultra-compact, high-resolution, real-time MEMS LADAR for the individual soldier[C]//Proceedings of 2005 IEEE Military Communications Conference, 2005: 3073-3079.

    Google Scholar

    [18] 李启坤, 邱琪.基于2D微电子机械系统(MEMS)镜全向激光雷达光学系统设计[J].应用光学, 2018, 39(4): 460-465.

    Google Scholar

    Li Q K, Qiu Q. Design on omnidirectional optical system of lidar based on 2D MEMS mirror[J]. Journal of Applied Optics, 2018, 39(4): 460-465.

    Google Scholar

    [19] Hung A C L, Lai H Y H, Lin T W, et al. An electrostatically driven 2D micro-scanning mirror with capacitive sensing for projection display[J]. Sensors and Actuators A: Physical, 2015, 222: 122-129. doi: 10.1016/j.sna.2014.10.008

    CrossRef Google Scholar

    [20] Huang C H, Yao J J, Wang L V, et al. A water-immersible 2-axis scanning mirror microsystem for ultrasound andha photoacoustic microscopic imaging applications[J]. Microsystem Technologies, 2013, 19(4): 577-582. doi: 10.1007/s00542-012-1660-4

    CrossRef Google Scholar

    [21] Chen C D, Wang Y J, Chang P. A novel two-axis MEMS scanning mirror with a PZT actuator for laser scanning projection[J]. Optics Express, 2012, 20(24): 27003-27017. doi: 10.1364/OE.20.027003

    CrossRef Google Scholar

    [22] quanergy官网[EB/OL].https://quanergy.com/s3/.

    Google Scholar

    [23] 韩学勤, 李丽, 谭东杰, 等.液晶光学相控阵技术[J].航空科学技术, 2012(1): 65-69. doi: 10.3969/j.issn.1007-5453.2012.01.019

    CrossRef Google Scholar

    Han X Q, Li L, Tan D J, et al. Liquid crystal optical phased array technology[J]. Aeronautical Science & Technology, 2012(1): 65-69. doi: 10.3969/j.issn.1007-5453.2012.01.019

    CrossRef Google Scholar

    [24] 金亚东, 闫爱民, 胡志娟, 等.光波导阵列相控阵扫描技术研究进展[J].激光与光电子学进展, 2014, 51(8): 080002.

    Google Scholar

    Jin Y D, Yan A M, Hu Z J, et al. Research progress of optical waveguide phased array scanner[J]. Laser & Optoelectronics Progress, 2014, 51(8): 080002.

    Google Scholar

    [25] 瞿荣辉, 叶青, 董作人, 等.基于电光材料的光学相控阵技术研究进展[J].中国激光, 2008, 35(12): 1861-1867. doi: 10.3321/j.issn:0258-7025.2008.12.001

    CrossRef Google Scholar

    Qu R H, Ye Q, Dong Z R, et al. Progress of optical phased array technology based on electro-optic material[J]. Chinese Journal of Lasers, 2008, 35(12): 1861-1867. doi: 10.3321/j.issn:0258-7025.2008.12.001

    CrossRef Google Scholar

    [26] 金亚东.高质量光学相控阵扫描光束分析与优化[D].上海: 上海师范大学, 2015: 1-40.

    Google Scholar

    Jin Y D. Analysis and optimization of high quality optical phased array scanning beam[D]. Shanghai: Shanghai Normal University, 2015: 1-40.http://cdmd.cnki.com.cn/Article/CDMD-10270-1015369248.htm

    Google Scholar

    [27] 职亚楠, 闫爱民, 刘德安, 等.电光控制二维激光光束扫描阵列: CN201203740Y[P]. 2009-03-04.

    Google Scholar

    Zhi Y N, Yan A M, Liu D A, et al. Electro-optical control two-dimension laser beam scanning array: CN201203740Y[P]. 2009-03-04.

    Google Scholar

    [28] 王耀川.光学相控阵激光雷达系统及系统性能分析[D].哈尔滨: 哈尔滨工业大学, 2007: 1-42.

    Google Scholar

    Wang Y C. Optical phased arrays laser radar system and performance analysis[D]. Harbin: Harbin Institute of Technology, 2007: 1-42.http://cdmd.cnki.com.cn/article/cdmd-10213-2008193232.htm

    Google Scholar

    [29] 陈君.液晶相控阵波控数据获取算法研究及显控系统设计实现[D].成都: 电子科技大学, 2009: 1-24.

    Google Scholar

    Chen J. Research on acquisition algorithm of liquid crystal phased array control data and design and implementation of display control system[D]. Chengdu: University of Electronic Science and Technology of China, 2009: 1-24.http://cdmd.cnki.com.cn/Article/CDMD-10614-2009167153.htm

    Google Scholar

    [30] Meyer R A. Optical beam steering using a multichannel lithium tantalate crystal[J]. Applied Optics, 1972, 11(3): 613-616. doi: 10.1364/AO.11.000613

    CrossRef Google Scholar

    [31] 林亚俊.光波导相控阵激光雷达接收系统设计[D].西安: 西安电子科技大学, 2015: 1-26.

    Google Scholar

    Lin Y J. The design of receiving system in optical waveguide phased array radar[D]. Xi'an: Xidian University, 2015: 1-26.http://cdmd.cnki.com.cn/Article/CDMD-10701-1016006703.htm

    Google Scholar

    [32] 吴超, 刘春波, 韩香娥.光波导相控阵激光雷达接收系统设计[J].红外与激光工程, 2016, 45(10): 1030003.

    Google Scholar

    Wu C, Liu C B, Han X E. Design of waveguide optical phased array ladar receiving system[J]. Infrared and Laser Engineering, 2016, 45(10): 1030003.

    Google Scholar

    [33] Wight D R, Heaton J M, Hughes B T, et al. Novel phased array optical scanning device implemented using GaAs/AlGaAs technology[J]. Applied Physics Letters, 1991, 59(8): 899-901. doi: 10.1063/1.105270

    CrossRef Google Scholar

    [34] Hobbs R H, Cantor A J, Grantham D H, et al. Laser electro-optic phased array devices (LEOPARD)[C]//Proceedings of Conference Proceedings LEOS Lasers and Electro-Optics Society, 1988: 94-95.

    Google Scholar

    [35] Crouch S C, Reibel R R, Curry J, et al. Method and system for doppler detection and doppler correction of optical phase-encoded range detection: 20180224547[P]. 2018-08-09.

    Google Scholar

    [36] 王肖, 王建强, 李克强, 等.智能车辆3-D点云快速分割方法[J].清华大学学报(自然科学版), 2014, 54(11): 1440-1446.

    Google Scholar

    Wang X, Wang J Q, Li K Q, et al. Fast segmentation of 3-D point clouds for intelligent vehicles[J]. Journal of Tsinghua University (Science and Technology), 2014, 54(11): 1440-1446.

    Google Scholar

    [37] 杨飞, 朱株, 龚小谨, 等.基于三维激光雷达的动态障碍实时检测与跟踪[J].浙江大学学报(工学版), 2012, 46(9): 1565-1571. doi: 10.3785/j.issn.1008-973X.2012.09.003

    CrossRef Google Scholar

    Yang F, Zhu Z, Gong X J, et al. Real-time dynamic obstacle detection and tracking using 3D Lidar[J]. Journal of Zhejiang University (Engineering Science), 2012, 46(9): 1565-1571. doi: 10.3785/j.issn.1008-973X.2012.09.003

    CrossRef Google Scholar

    [38] 邱保志, 张西芝.基于网格的参数自动化聚类算法[J].郑州大学学报(工学版), 2006, 27(2): 91-93. doi: 10.3969/j.issn.1671-6833.2006.02.023

    CrossRef Google Scholar

    Qiu B Z, Zhang X Z. Grid-based clustering algorithm with the parameter automatization[J]. Journal of Zhengzhou University (Engineering Science), 2006, 27(2): 91-93. doi: 10.3969/j.issn.1671-6833.2006.02.023

    CrossRef Google Scholar

    [39] 叶语同, 李必军, 付黎明.智能驾驶中点云目标快速检测与跟踪[J].武汉大学学报(信息科学版), 2019, 44(1):139-144, 152.

    Google Scholar

    Ye Y T, Li B J, Fu L M. Fast Object Detection and Tracking in Laser Data for Autonomous Driving[J]. Geomatics and Information Science of Wuhan University, 2019, 44(1): 139-144, 152.

    Google Scholar

    [40] Klasing K, Wollherr D, Buss M. A clustering method for efficient segmentation of 3D laser data[C]//Proceedings of 2008 IEEE International Conference on Robotics and Automation, 2008: 4043-4048.

    Google Scholar

    [41] Moosmann F, Pink O, Stiller C. Segmentation of 3D LIDAR data in non-flat urban environments using a local convexity criterion[C]//Proceedings of 2009 IEEE Intelligent Vehicles Symposium, 2009: 215-220.

    Google Scholar

    [42] 段建民, 王昶人, 任璐, 等.基于多层激光雷达的可行驶区域信息提取算法[J].电子技术应用, 2017, 43(10): 78-82.

    Google Scholar

    Duan J M, Wang C R, Ren L, et al. Algorithm of driving area information extraction based on multi-layer lidar[J]. Application of Electronic Technique, 2017, 43(10): 78-82.

    Google Scholar

    [43] 谌彤童.基于三维激光雷达的动态车辆检测与跟踪[D].长沙: 国防科学技术大学, 2016.

    Google Scholar

    Chen T T. 3D LIDAR-based dynamic vehicle detection and tracking[D]. Changsha: National University of Defense Technology, 2016.http://cdmd.cnki.com.cn/Article/CDMD-90002-1017834260.htm

    Google Scholar

    [44] Wang D Z, Posner I, Newman P. Model-free detection and tracking of dynamic objects with 2D lidar[J]. The International Journal of Robotics Research, 2015, 34(7): 1039-1063. doi: 10.1177/0278364914562237

    CrossRef Google Scholar

    [45] Lee J H, Tsubouchi T, Yamamoto K, et al. People tracking using a robot in motion with laser range finder[C]//Proceedings of 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2006: 2936-2942.

    Google Scholar

    [46] Coué C, Pradalier C, Laugier C, et al. Bayesian Occupancy filtering for multitarget tracking: an automotive application[J]. The International Journal of Robotics Research, 2006, 25(1): 19-30. doi: 10.1177/0278364906061158

    CrossRef Google Scholar

    [47] Baig Q, Perrollaz M, Do Nascimento J B, et al. Using fast classification of static and dynamic environment for improving Bayesian occupancy filter (BOF) and tracking[C]//Proceedings of 2012 International Conference on Control Automation Robotics and Vision, 2012: 656-661.

    Google Scholar

    [48] Rusu R B, Bradski G, Thibaux R, et al. Fast 3D recognition and pose using the viewpoint feature histogram[C]//Proceedings of 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2010: 2155-2162.

    Google Scholar

    [49] Aldoma A, Vincze M, Blodow N, et al. CAD-model recognition and 6DOF pose estimation using 3D cues[C]//Proceedings of 2011 IEEE International Conference on Computer Vision Workshops, 2011: 585-592.

    Google Scholar

    [50] Taati B, Bondy M, Jasiobedzki P, et al. Variable dimensional local shape descriptors for object recognition in range data[C]//Proceedings of 2007 IEEE 11th International Conference on Computer Vision, 2007: 1-8.

    Google Scholar

    [51] 郭裕兰.点云局部特征描述与三维目标重建识别技术研究[D].长沙: 国防科学技术大学, 2015: 1-26.

    Google Scholar

    Guo Y L. Local feature description, 3D modeling and object reconstruction in point-cloud[D]. Changsha: National University of Defense Technology, 2015: 1-26.

    Google Scholar

    [52] Mian A S, Bennamoun M, Owens R. Three-dimensional model-based object recognition and segmentation in cluttered scenes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(10): 1584-1601. doi: 10.1109/TPAMI.2006.213

    CrossRef Google Scholar

    [53] Zhong Y. Intrinsic shape signatures: a shape descriptor for 3D object recognition[C]//Proceedings of 2009 IEEE 12th International Conference on Computer Vision Workshops, 2009: 689-696.

    Google Scholar

    [54] Smith R, Self M, Cheeseman P. Estimating uncertain spatial relationships in robotics[M]//Cox I J, Wilfong G T. Autonomous Robot Vehicles. New York, NY: Springer, 1990: 167-193.

    Google Scholar

    [55] Montemerlo M, Thrun S, Koller D, et al. FastSLAM: a factored solution to the simultaneous localization and mapping problem[C]//Proceedings of the AAAI National Conference on Artificial Intelligence, 2002: 593-598.

    Google Scholar

    [56] Grisetti G, Stachniss C, Burgard W. Improved techniques for grid mapping with Rao-Blackwellized particle filters[J]. IEEE Transactions on Robotics, 2007, 23(1): 34-46.

    Google Scholar

    [57] Lu F, Milios E. Globally consistent range scan alignment for environment mapping[J]. Autonomous Robots, 1997, 4(4): 333-349. doi: 10.1023/A:1008854305733

    CrossRef Google Scholar

    [58] Hess W, Kohler D, Rapp H, et al. Real-time loop closure in 2D LIDAR SLAM[C]//Proceedings of 2016 IEEE International Conference on Robotics and Automation, 2016: 1271-1278.

    Google Scholar

  • Overview: With the preparation of intelligent driving into industrialization and commercialization, LiDAR has become an indispensable environmental sensor with its excellent performance and has developed rapidly in hardware technology and application algorithms. This paper introduces the key technologies of intelligent driving vehicle LiDAR hardware by using LiDAR scanning method and related technology as the entry point, discussing the principle, characteristics and current status of mechanical, hybrid and all-solid-state automotive LiDAR; three points of vehicle LiDAR application algorithms, point cloud segmentation, target tracking and recognition, real-time location and map reconstruction are summarized and analyzed. Mechanical vehicle LiDAR is the earliest LiDAR product used in intelligent driving. It is still widely used in intelligent driving test vehicles because of its simple principle, easy to drive and achieve horizontal 360° scanning. The cost and unreliability of long-term use in the driving environment hinder its promotion and popularity. The hybrid vehicle-mounted LiDAR makes the mechanical structure miniaturized and electronically designed; the main components are achieved by the chip process, which is technically easy to implement and has begun to be applied in the intelligent driving solution, but its performance still needs to be optimized. The all-solid-state on-board laser radar does not have any macro or micro moving parts inside, which is reliable and durable. However, the manufacturing process is difficult and still in the early stage of development. The purpose of the LiDAR application algorithms is to accurately and reliably sense the surrounding environment and thus ensure safe and efficient driving. Among them, the point cloud segmentation algorithm is the basis of target tracking and recognition. Target tracking and recognition will realize the judgment of the motion state and geometric features of obstacles around the car. SLAM will realize the precise positioning and passable path planning of the car. The existing automotive LiDAR application algorithms have different degrees of limitations. Firstly, the accuracy and real-time application of the algorithm are difficult to satisfy at the same time. Secondly, the algorithms are mostly developed for a specific scenario, and it is difficult to ensure portability and stability. The complexity and diversity of the scene make the research of the algorithm colorful, showing a multi-level, multi-angle and thus multi-faceted situation. The analysis shows that the vehicle LiDAR will further move toward solid-state, intelligent and networked in order to reduce costs, improve performance and meet intelligent driving requirements. While, the pursuit of application algorithm research is real-time, efficient and reliable.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(2)

Article Metrics

Article views(15398) PDF downloads(7052) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint