基于字典算法的OCT图像散斑稀疏降噪

王帆, 陈明惠, 高乃珺, 等. 基于字典算法的OCT图像散斑稀疏降噪[J]. 光电工程, 2019, 46(6): 180572. doi: 10.12086/oee.2019.180572
引用本文: 王帆, 陈明惠, 高乃珺, 等. 基于字典算法的OCT图像散斑稀疏降噪[J]. 光电工程, 2019, 46(6): 180572. doi: 10.12086/oee.2019.180572
Wang Fan, Chen Minghui, Gao Naijun, et al. OCT image speckle sparse noise reduction based on dictionary algorithm[J]. Opto-Electronic Engineering, 2019, 46(6): 180572. doi: 10.12086/oee.2019.180572
Citation: Wang Fan, Chen Minghui, Gao Naijun, et al. OCT image speckle sparse noise reduction based on dictionary algorithm[J]. Opto-Electronic Engineering, 2019, 46(6): 180572. doi: 10.12086/oee.2019.180572

基于字典算法的OCT图像散斑稀疏降噪

  • 基金项目:
    国家自然科学基金青年科学基金资助项目(6130115);上海市自然科学基金资助项目(13ZR1457900);上海市科委产学研医项目(15DZ1940400)
详细信息
    作者简介:
    通讯作者: 陈明惠(1981-),女,博士,副教授,主要从事生物医学光学等方面的研究。E-mail:cmhui.43@163.com
  • 中图分类号: TP391.41

OCT image speckle sparse noise reduction based on dictionary algorithm

  • Fund Project: Supported by the National Science Foundation for Young Scientists of China (61308115), Shanghai Natural Science Foundation (13ZR1457900), and Industrial Technology and Medical Research Funds of Shanghai (15DZ1940400)
More Information
  • 光学相干层析扫描(OCT)作为一种新型无创高分辨率扫描方式,在临床上得到广泛应用,但是OCT图像本身存在严重的散斑噪声,这大大影响了疾病的诊断。本文针对OCT图像中的乘性散斑噪声,改进了两种原始字典降噪算法。该算法首先对OCT图像进行对数变换,采用正交匹配追踪算法进行稀疏编码,以及K奇异值分解学习算法进行自适应字典的更新,最后通过加权平均以及指数变换回到空域。实验结果表明,本文改进的两种字典算法能有效降低OCT图像中的散斑噪声,获得良好的视觉效果。并通过均方误差(MSE)、峰值信噪比(PSNR)、结构相似性(SSIM)以及边缘保持指数(EPI)四个指标评价降噪效果,与两种原始字典降噪算法和传统滤波算法相比,两种改进字典算法降噪效果优于其他算法,其中自适应字典算法表现更好。

  • Overview: As a new non-invasive high-resolution scanning method, optical coherence tomography (OCT) has been widely used in clinical practice. Since the OCT imaging system uses an interference technique, the use of tissue scattering properties of light will inevitably introduce speckle noise. These speckle noises reduce the signal-to-noise ratio and contrast of the image, and also destroy the edge features of the image. As a result, it seriously affects people's accurate acquisition of image information. Therefore, the processing of OCT image speckle noise is very important before making a clinical diagnosis. The dictionary algorithm was originally proposed for Gaussian additive noise. This paper improves two original dictionary noise reduction algorithms for multiplicative speckle noise in OCT. The improved algorithm is divided into four steps. The first step is to establish and solve the speckle noise model of the OCT image. Firstly, the sparse domain model of small-sized image blocks is established and its noise reduction problem is solved. Then, the ideas in the Markov random field are used to generalize to large-size images. In the second step, logarithmically transforming the OCT image and performing noise estimation; In the third step, overlapping blocks the noisy image, the size of the image block is 8 pixels×8 pixels, the dictionary algorithm requires sparse coding and noise reduction for each block. The orthogonal matching pursuit algorithm (OMP) is used to perform sparse coding of two dictionary algorithms. In the fixed dictionary algorithm, the dictionary selects the discrete cosine transform (DCT) dictionary. In the adaptive dictionary algorithm, the initial dictionary selects the DCT dictionary and the dictionary training is performed by itself, and the dictionary update is completed by the K singular value decomposition learning algorithm; In the fourth step, the overlapping image blocks in the sparse coding stage are weighted averaged and returned to the spatial domain by exponential transformation. Selecting a randomly OCT slice and reduce noise for it, compared with the two original dictionary noise reduction algorithms and the traditional filtering algorithms, the improved two dictionary algorithms preserve most of the image information and edge detail information while suppressing speckle noise. Furthermore, three random OCT slice images are selected to simulate the improved two dictionary denoising algorithms. The improved adaptive dictionary algorithm has better noise reduction performance through subjective visual effects and four objective evaluation indicators. The two improved dictionary noise reduction algorithms proposed in this paper can be flexibly applied to various OCT noisy images and serve for subsequent image processing.

  • 加载中
  • 图 1  改进字典算法降噪流程图

    Figure 1.  The noise reduction flowchart of improved dictionary algorithm

    图 2  训练字典。(a)固定字典;(b)自适应字典

    Figure 2.  Trained dictionary.(a) Fixed dictionary; (b) Adaptive dictionary

    图 3  各算法的降噪结果。(a) OCT原图;(b)原固定字典算法;(c)原自适应字典算法;(d)中值滤波;(e) Lee滤波;(f)维纳滤波;(g)改进固定字典算法;(h)改进自适应字典算法

    Figure 3.  Speckle reduction results of seven algorithms.(a) Original OCT image; (b) Original fixed dictionary algorithm; (c) Original adaptive dictionary algorithm; (d) Median filtering; (e) Lee filtering; (f) Wiener filtering; (g) Improved fixed dictionary algorithm; (h) Improved adaptive dictionary algorithm

    图 4  两种改进后字典算法的降噪结果图。(ac)随机选取的三张OCT切片;(df)改进固定字典降噪图;(gi)改进自适应字典降噪图

    Figure 4.  Speckle reduction results of two improved dictionary algorithms.(ac) Randomly selected three OCT slices; (df) Noise reduction results by improved fixed dictionary algorithms; (gi) Noise reduction results by improved adaptive dictionary algorithms

    表 1  七种降噪算法的性能对比

    Table 1.  Performance comparison of seven algorithms

    MSE PSNR/dB SSIM EPI
    OFD 85.0727 28.8329 0.5037 0.4345
    OAD 70.4629 29.6512 0.5137 0.4387
    中值 97.0321 28.2617 0.6643 0.3464
    Lee 101.0175 28.0868 0.7591 0.5692
    维纳 72.5142 29.5266 0.6896 0.3438
    IFD 69.5172 29.7099 0.8057 0.6842
    IAD 46.8668 31.4222 0.7988 0.6569
    下载: 导出CSV

    表 2  两种改进的字典算法的降噪结果值

    Table 2.  Speckle reduction result values of two improved dictionary algorithms

    MSE PSNR/dB SSIM EPI
    切片97 IFD 47.2845 31.3836 0.8388 0.5962
    IAD 42.1495 31.8829 0.8540 0.6051
    切片41 IFD 53.8202 30.8213 0.8299 0.5852
    IAD 45.1312 31.5860 0.8480 0.6150
    切片26 IFD 46.4219 31.4636 0.8306 0.5882
    IAD 45.5145 32.0116 0.8468 0.6004
    平均值 IFD 49.1755 31.2228 0.8331 0.5899
    IAD 42.7332 31.8268 0.8496 0.6068
    下载: 导出CSV
  • [1]

    Huang D, Swanson E A, Lin C P, et al. Optical coherence tomography[J]. Science, 1991, 254(5035): 1178-1181. doi: 10.1126/science.1957169

    [2]

    孙延奎.光学相干层析医学图像处理及其应用[J].光学精密工程, 2014, 22(4): 1086-1104. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201404037

    Sun Y K. Medical image processing techniques based on optical coherence tomography and their applications[J]. Optics and Precision Engineering, 2014, 22(4): 1086-1104. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201404037

    [3]

    Xiang S H, Zhou L, Schmitt J M. Speckle noise reduction for optical coherence tomography[J]. Proceedings of SPIE, 1998, 3196: 79-88. doi: 10.1117/12.297921

    [4]

    Jung C R, Schacanski J. Adaptive image denoising in scale-space using the wavelet transform[C]//Proceedings of the 14th Brazilian Symposium on Computer Graphics and Image Processing, Florianopolis, Brazil, 2001: 172-178.

    [5]

    Schmitt J M. Array detection for speckle reduction in optical coherence microscopy[J]. Physics in Medicine & Biology, 1997, 42(7): 1427-1439. doi: 10.1088/0031-9155/42/7/015

    [6]

    Pircher M, Gotzinger E, Leitgeb R, et al. Speckle reduction in optical coherence tomography by frequency compounding[J]. Journal of Biomedical Optics, 2003, 8(3): 565-569. doi: 10.1117/1.1578087

    [7]

    Romano Y, Elad M. Improving K-SVD denoising by post-processing its method-noise[C]//Proceedings of 2013 IEEE International Conference on Image Processing, Melbourne, VIC, Australia, 2013: 435-439.

    [8]

    Tang X O, Wang X G. Face sketch synthesis and recognition[C]//Proceedings of the 9th IEEE International Conference on Computer Vision, Nice, France, 2003: 687-694.

    [9]

    Elad M, Aharon M. Image denoising via sparse and redundant representations over learned dictionaries[J]. IEEE Transactions on Image Processing, 2006, 15(12): 3736-3745. doi: 10.1109/TIP.2006.881969

    [10]

    Elad M. Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing[M]. New York: Springer, 2010: 1094-1097.

    [11]

    Bruckstein A M, Donoho D L, Elad M. From sparse solutions of systems of equations to sparse modeling of signals and images[J]. SIAM Review, 2009, 51(1): 34-81. doi: 10.1137/060657704

    [12]

    Zhang Y S, Ji K F, Deng Z P, et al. Clustering-based SAR image denoising by sparse representation with KSVD[C]//Proceedings of 2016 IEEE International Geoscience and Remote Sensing Symposium, Beijing, 2016: 5003-5006.

    [13]

    Song X R, Wu L D, Hao H X. Hyperspectral image denoising base on adaptive sparse representation[C]//Proceedings of 2018 IEEE Third International Conference on Data Science in Cyberspace, Guangzhou, 2018: 735-739.

    [14]

    Nguyen T T, Trinh D H, Linh-Trung N. An efficient example-based method for CT image denoising based on frequency decomposition and sparse representation[C]//Proceedings of 2016 International Conference on Advanced Technologies for Communications, Hanoi, Vietnam, 2016: 293-296.

    [15]

    杨培, 高雷阜, 王江, 等.基于稀疏表示与字典学习的彩色图像去噪算法[J].计算机工程与科学, 2018, 40(5): 842-848. doi: 10.3969/j.issn.1007-130X.2018.05.012

    Yang P, Gao L F, Wang J, et al. A color image denoising algorithm based on sparse representation and dictionary learning[J]. Computer Engineering & Science, 2018, 40(5): 842-848. doi: 10.3969/j.issn.1007-130X.2018.05.012

    [16]

    Pyatykh S, Hesser J, Zheng L. Image noise level estimation by principal component analysis[J]. IEEE Transactions on Image Processing, 2013, 22(2): 687-699. doi: 10.1109/TIP.2012.2221728

    [17]

    何锦涛, 陈明惠, 贾文宇, 等.眼底OCT图像中糖尿病性黄斑水肿的分割[J].光电工程, 2018, 45(7): 170605. doi: 10.12086/oee.2018.170605

    He J T, Chen M H, Jia W Y, et al. Segmentation of diabetic macular edema in OCT retinal images[J]. Opto-Electronic Engineering, 2018, 45(7): 170605. doi: 10.12086/oee.2018.170605

    [18]

    Huynh-Thu Q, Ghanbari M. Scope of validity of PSNR in image/video quality assessment[J]. Electronics Letters, 2008, 44(13): 800-801. doi: 10.1049/el:20080522

    [19]

    Wang Z, Bovik A C, Sheikh H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612. doi: 10.1109/TIP.2003.819861

    [20]

    邓菊香, 梁艳梅.光学相干层析图像的小波去噪方法研究[J].光学学报, 2009, 29(8): 2138-2141. http://d.old.wanfangdata.com.cn/Periodical/gxxb200908019

    Deng J X, Liang Y M. Noise reduction with wavelet transform in optical coherence tomographic images[J]. Acta Optica Sinica, 2009, 29(8): 2138-2141. http://d.old.wanfangdata.com.cn/Periodical/gxxb200908019

    [21]

    Donoho D L, Johnstone I M. Ideal spatial adaptation by wavelet shrinkage[J]. Biometrika, 1994, 81(3): 425-455. doi: 10.1093/biomet/81.3.425

  • 加载中

(4)

(2)

计量
  • 文章访问数:  59579
  • PDF下载数:  3227
  • 施引文献:  0
出版历程
收稿日期:  2018-11-06
修回日期:  2019-03-15
刊出日期:  2019-06-25

目录

/

返回文章
返回