Sun Wenhan, Wang Shuai, He Xing, et al. Modal wavefront reconstruction to obtain Zernike coefficient with no cross coupling in lateral shearing measurement[J]. Opto-Electronic Engineering, 2019, 46(5): 180273. doi: 10.12086/oee.2019.180273
Citation: Sun Wenhan, Wang Shuai, He Xing, et al. Modal wavefront reconstruction to obtain Zernike coefficient with no cross coupling in lateral shearing measurement[J]. Opto-Electronic Engineering, 2019, 46(5): 180273. doi: 10.12086/oee.2019.180273

Modal wavefront reconstruction to obtain Zernike coefficient with no cross coupling in lateral shearing measurement

More Information
  • Modal cross coupling frequently occurs in modal approaches from wavefront gradient data such as lateral shearing measurement through Zernike circle polynomials, since the gradients of Zernike circle polynomials are not orthogonal. We use a modal approaches incorporating the Gram matrix, using the orthogonality of angular derivative of m≠0 modes with respect to weight function w(ρ) = ρ (polar coordinates), and the orthogonality of radial derivative of m = 0 modes with respect to weight function w(ρ) = ρ(1-ρ2) (polar coordinates). The Gram matrix method needs no auxiliary vector functions. The Zernike coefficients can be obtained with no modal cross coupling. The simulation results are given, which indicate that the modal cross coupling is avoided by using Gram matrix method. This method can be easily extended to annulus, and the coefficients of Zernike annular polynomials with no modal cross coupling can be obtained.
  • 加载中
  • [1] Rimmer M P. Method for evaluating lateral shearing interferograms[J]. Applied Optics, 1974, 13(3): 623–629. doi: 10.1364/AO.13.000623

    CrossRef Google Scholar

    [2] Harbers G, Kunst P J, Leibbrandt G W R. Analysis of lateral shearing interferograms by use of Zernike polynomials[J]. Applied Optics, 1996, 35(31): 6162–6172. doi: 10.1364/AO.35.006162

    CrossRef Google Scholar

    [3] Shen W, Chang M W, Wan D S. Zernike polynomial fitting of lateral shearing interferometry[J]. Optical Engineering, 1997, 36(36): 905–913. doi: 10.1117/1.601600

    CrossRef Google Scholar

    [4] Hunt B R. Matrix formulation of the reconstruction of phase values from phase differences[J]. Journal of the Optical Society of America, 1979, 69(3): 393–399. doi: 10.1364/JOSA.69.000393

    CrossRef Google Scholar

    [5] 姜文汉.自适应光学发展综述[J].光电工程, 2018, 45(3): 170489 doi: 10.12086/oee.2018.170489

    CrossRef Google Scholar

    Jiang W H. Overview of adaptive optics development[J]. Opto-Electronic Engineering, 2018, 45(3): 170489. doi: 10.12086/oee.2018.170489

    CrossRef Google Scholar

    [6] Tyson R. Principles of Adaptive Optics[M]. 3rd ed. London: CRC Press, 2010: 111–176.

    Google Scholar

    [7] 张强, 姜文汉, 许冰.利用Zernike多项式对湍流波前进行波前重构[J].光电工程, 1998, 25(6): 15–19. doi: 10.1088/0256-307X/16/12/025

    CrossRef Google Scholar

    Zhang Q, Jiang W H, Xu B. Reconstruction of turbulent optical wavefront realized by Zernike polynomial[J]. Opto-Electronic Engineering, 1998, 25(6): 15–19. doi: 10.1088/0256-307X/16/12/025

    CrossRef Google Scholar

    [8] 鲜浩, 李华贵, 姜文汉, 等.用Hartmann-Shack传感器测量激光束的波前相位[J].光电工程, 1995, 22(2): 38–45.

    Google Scholar

    Xian H, Li H G, Jiang W H, et al. Measurement of the wavefront phase of a laser beam with Hartmann-Shack sensor[J]. Opto-Electronic Engineering, 1995, 22(2): 38–45.

    Google Scholar

    [9] 张锐, 杨金生, 田雨, 等.焦面哈特曼传感器波前相位复原[J].光电工程, 2013, 40(2): 32–39. doi: 10.3969/j.issn.1003-501X.2013.02.005

    CrossRef Google Scholar

    Zhang R, Yang J S, Tian Y, et al. Wavefront phase recovery from the plenoptic camera[J]. Opto-Electronic Engineering, 2013, 40(2): 32–39. doi: 10.3969/j.issn.1003-501X.2013.02.005

    CrossRef Google Scholar

    [10] Cubalchini R. Modal wave-front estimation from phase derivative measurements[J]. Journal of the Optical Society of America, 1979, 69(7): 972–977. doi: 10.1364/JOSA.69.000972

    CrossRef Google Scholar

    [11] Herrmann J. Cross coupling and aliasing in modal wave-front estimation[J]. Journal of the Optical Society of America, 1981, 71(8): 989–992. doi: 10.1364/JOSA.71.000989

    CrossRef Google Scholar

    [12] Huang S Y, Xi F J, Liu C H, et al. Eigenfunctions of Laplacian for phase estimation from wavefront gradient or curvature sensing[J]. Optics Communications, 2011, 284(12): 2781–2783. doi: 10.1016/j.optcom.2011.02.045

    CrossRef Google Scholar

    [13] Huang S Y, Xi F J, Liu C H, et al. Phase retrieval on annular and annular sector pupils by using the eigenfunction method to solve the transport of intensity equation[J]. Journal of the Optical Society of America A, 2012, 29(4): 513–520. doi: 10.1364/JOSAA.29.000513

    CrossRef Google Scholar

    [14] Huang S Y, Yu N, Xi F J, et al. Modal wavefront reconstruction with Zernike polynomials and eigenfunctions of Laplacian[J]. Optics Communications, 2013, 288: 7–12. doi: 10.1016/j.optcom.2012.09.067

    CrossRef Google Scholar

    [15] Gavrielides A. Vector polynomials orthogonal to the gradient of Zernike polynomials[J]. Optics Letters, 1982, 7(11): 526–528. doi: 10.1364/OL.7.000526

    CrossRef Google Scholar

    [16] Zhao C Y, Burge J H. Orthonormal vector polynomials in a unit circle, Part Ⅰ: basis set derived from gradients of Zernike polynomials[J]. Optics Express, 2007, 15(26): 18014–18024. doi: 10.1364/OE.15.018014

    CrossRef Google Scholar

    [17] Zhao C Y, Burge J H. Orthonormal vector polynomials in a unit circle, Part Ⅱ: completing the basis set[J]. Optics Express, 2008, 16(9): 6586–6591. doi: 10.1364/OE.16.006586

    CrossRef Google Scholar

    [18] Mahajan V N, Acosta E. Vector polynomials for direct analysis of circular wavefront slope data[J]. Journal of the Optical Society of America A, 2017, 34(10): 1908–1913. doi: 10.1364/JOSAA.34.001908

    CrossRef Google Scholar

    [19] Sun W H, Wang S, He X, et al. Jacobi circle and annular polynomials: modal wavefront reconstruction from wavefront gradient[J]. Journal of the Optical Society of America A, 2018, 35(7): 1140–1148. doi: 10.1364/JOSAA.35.001140

    CrossRef Google Scholar

    [20] Horn R A, Johnson C R. Matrix Analysis[M]. Cambridge: Cambridge University Press, 1990: 407.

    Google Scholar

    [21] Mahajan V N. Zernike circle polynomials and optical aberrations of systems with circular pupils[J]. Applied Optics, 1994, 33(34): 8121–8124. doi: 10.1364/AO.33.008121

    CrossRef Google Scholar

    [22] Zernike F. Diffraction theory of the knife-edge test and its improved form, the phase-contrast method[J]. Monthly Notices of the Royal Astronomical Society, 2002, 94(2): 377–384. doi: 10.1117/1.1488608

    CrossRef Google Scholar

    [23] Born M, Wolf E. Principles of Optics[M]. 7th ed. Cambridge: Cambridge University Press, 1999: 905–910.

    Google Scholar

    [24] Wang Z X, Guo D R. Special Functions[M]. Singapore: World Scientific, 1989: 139,169–173.

    Google Scholar

    [25] Andrews G E, Askey R, Roy R. Special Functions[M]. Cambridge: Cambridge University Press, 1999: 94.

    Google Scholar

    [26] Mahajan V N. Zernike annular polynomials and optical aberrations of systems with annular pupils[J]. Applied Optics, 1994, 33(34): 8125–8127. doi: 10.1364/AO.33.008125

    CrossRef Google Scholar

  • Overview: Modal cross coupling frequently occurs in modal approaches from wavefront gradient data such as lateral shearing measurement through Zernike circle polynomials, since the gradients of Zernike circle polynomials are not orthogonal. We use a modal approach incorporating the Gram matrix, instead of least squares estimation, to reconstruct coefficients of modes for high sampling gradient measurement such as lateral shearing measurement. The matrix equation incorporating the Gram matrix has exactly one solution when the modes of the Gram matrix are linearly dependent. The matrix equation incorporating the Gram matrix has the solution without modal cross coupling when the modes of the Gram matrix are mutually orthogonal with respect to the same weight function of the Gram matrix. Using the orthogonality of angular derivative of m≠0 modes with respect to weight function w(ρ) = ρ (polar coordinates), one can obtain Zernike coefficients of m≠0 modes without modal cross coupling by Gram matrix method. Using the orthogonality of radial derivative of m = 0 modes with respect to weight function w(ρ) = ρ(1-ρ2) (polar coordinates), one can obtain Zernike coefficients of m≠0 modes without modal cross coupling by Gram matrix method. The Gram matrix method needs no auxiliary vector functions, and can be easily constructed and calculated. The Zernike coefficients can be obtained with no modal cross coupling. The numerical simulation results are given. Remaining error can characterize the modal cross coupling when sampling number is sufficiently high so that modal aliasing is able to be neglected. The numerical simulation result shows that the remaining error keeps very small as the truncation number J changes. The result indicates that the modal cross coupling is avoided by using Gram matrix method. This method can be easily generalized to annulus, one can obtain Zernike annular polynomial coefficients with no modal cross coupling.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Article Metrics

Article views(7796) PDF downloads(2203) Cited by(0)

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint