SiO2光学薄膜的吸收边特性

孔明东, 李斌成, 郭春, 等. SiO2光学薄膜的吸收边特性[J]. 光电工程, 2019, 46(4): 180220. doi: 10.12086/oee.2019.180220
引用本文: 孔明东, 李斌成, 郭春, 等. SiO2光学薄膜的吸收边特性[J]. 光电工程, 2019, 46(4): 180220. doi: 10.12086/oee.2019.180220
Kong Mingdong, Li Bincheng, Guo Chun, et al. Characterictics of absorption edge of SiO2 films[J]. Opto-Electronic Engineering, 2019, 46(4): 180220. doi: 10.12086/oee.2019.180220
Citation: Kong Mingdong, Li Bincheng, Guo Chun, et al. Characterictics of absorption edge of SiO2 films[J]. Opto-Electronic Engineering, 2019, 46(4): 180220. doi: 10.12086/oee.2019.180220

SiO2光学薄膜的吸收边特性

  • 基金项目:
    中国科学院西部之光基金;国家自然科学基金资助项目(61805247)
详细信息
    作者简介:
    通讯作者: 李斌成(1966-),男,博士,研究员,主要从事光学测试技术的研究。E-mail:bcli@ioe.ac.cn
  • 中图分类号: TB383; O484

Characterictics of absorption edge of SiO2 films

  • Fund Project: Supported by the West Light Foundation of the Chinese Academy of Sciences and National Natural Science Foundation of China (61805247)
More Information
  • 二氧化硅(SiO2)是光学系统中最常用光学薄膜材料之一,其微观结构、缺陷等信息对于研究和提高薄膜的性能具有重要作用。本文通过电子束蒸发、离子辅助、磁控溅射方法制备SiO2薄膜并进行测试,计算出其吸收边光谱,对吸收边光谱的强吸收区、e指数区、弱吸收区进行分段分析得到SiO2薄膜的带隙宽度、带尾能量和氧空位缺陷含量数据。进一步分析三种薄膜和其在常规退火温度下的带隙宽度、带尾能量和氧空位缺陷含量的数据,获得SiO2薄膜的微观原子排列结构、微观缺陷信息,并对不同镀膜技术和不同退火温度下SiO2薄膜的原子排列结构、微观缺陷的差异和变化进行了分析和讨论。

  • Overview: Silicon dioxide (SiO2) is one of the most widely used in various optical system as film material. The micro-structure and defects of SiO2 films are of great importance to the functions and performance of these optical systems. The absorption edge spectrum of thin film was calculated by measuring the ultraviolet spectrum curve of SiO2 thin film sample. By analyzing and calculating the strong absorption, exponential absorption, and weak absorption regions in the absorption edge spectrum of SiO2 thin film, the data of the bandgap, Urbach tail energy, and concentration of oxygen deficiency centers ODC(I) can be obtained. Based on the relationship of these experimental data to thin film micro-structure and defects, information about the atomic arrangement structure and microscopic defects of SiO2 thin film can be learned. In this paper, SiO2 films were prepared by electron beam evaporation, ion assisted deposition and magnetron sputtering. The data of the bandgap, Urbach tail energy, and ODC(I) content of raw films and films annealed at different temperatures were obtained by measurement, calculation and analysis. These data are used to understand the atomic arrangement structure and microscopic defects of SiO2 films prepared by different coating technologies and at different annealing temperatures. The structural disorder in electron beam evaporation SiO2 films is the most serious, followed by the magnetron sputtering SiO2 films, and the ion assisted deposition SiO2 films have the least structural disorder. Conventional annealing temperatures treatment cannot reduce the structural disorder of SiO2 film, and the structural disorder of all the films is much more serious than that of bulk quartz glass. The SiO2 films prepared by these deposition techniques are non-stoichiometric, and the electron beam evaporation SiO2 films are the most severe non-stoichiometric ones. Ion assisted deposition can significantly reduce the non-stoichiometric of SiO2 films. Annealing can also reduce the non-stoichiometric of SiO2 films. The defect of ODC(I) is the most in electron beam evaporation SiO2 film, and the least in ion assisted deposition SiO2 film. Annealing can significantly reduce the ODC(I) of electron beam evaporation SiO2 film. The best performances of the structural disorder, non-stoichiometric and ODC(I) content of SiO2 films were achieved by ion assisted deposition. Thermal annealing could not change the structural disorder of SiO2 films, but it preferred to improve stoichiometry and decrease ODC(I) defects in SiO2 films. Such information of SiO2 films are important to the preparation of high-performance optical coatings employing SiO2 as the low refractive index material.

  • 加载中
  • 图 1  三种SiO2薄膜和基片的透射光谱

    Figure 1.  The transmittance spectra of three SiO2 films samples and the substrate

    图 2  MgF2基片吸收系数

    Figure 2.  The absorption spectrum of MgF2 substrate

    图 3  IAD沉积SiO2薄膜测试和计算透射曲线

    Figure 3.  The measured and calculated transmittance spectra of IAD SiO2 film samples

    图 4  三种SiO2薄膜和基片的吸收谱

    Figure 4.  The absorption spectra of three SiO2 film samples and the substrate

    图 5  SiO2薄膜和石英玻璃的光学带隙

    Figure 5.  The optical bandgaps of SiO2 films and silica

    图 6  IAD沉积SiO2薄膜的带尾能量拟合

    Figure 6.  The fit of Urbach tail for SiO2 film deposited with IAD

    图 7  SiO2薄膜样品中氧空位吸收系数和高斯拟合

    Figure 7.  The absorption and corresponding Guass fit of oxygen deficiency center in SiO2 films

    图 8  SiO2薄膜带隙宽度

    Figure 8.  The bandgaps of SiO2 films

    图 9  SiO2薄膜带尾能量

    Figure 9.  The Urbach tail energy of SiO2 films

    图 10  SiO2 薄膜中氧空位含量

    Figure 10.  The content of oxygen-defect-center of SiO2 films

  • [1]

    Dijon J, Rafin B, Pelle C, et al. One-hundred joule per square centimeter 1.06-μm mirrors[J]. Proceedings of SPIE, 2000, 3902: 158-168. doi: 10.1117/12.379321

    [2]

    Scherer K, Nouvelot L, Lacan P, et al. Optical and mechanical characterization of evaporated SiO2 layers. Long-term evolution[J]. Applied Optics, 1996, 35(25): 5067-5072. doi: 10.1364/AO.35.005067

    [3]

    季一勤.离子束溅射高性能SiO2薄膜特性研究[D].哈尔滨: 哈尔滨工业大学, 2013: 68-94.

    Ji Y Q, Investigation of high performance SiO2 thin film prepared by ion beam sputtering deposition[D]. Harbin Institute of Technology, 2013: 68-94.http://cdmd.cnki.com.cn/Article/CDMD-10213-1014084927.htm

    [4]

    Beauville F, Buskulic D, Flaminio R, et al. Low-loss coatings for the VIRGO large mirrors[J]. Proceedings of SPIE, 2004, 5250: 483-492. doi: 10.1117/12.516431

    [5]

    Lorenzi R, Brovelli S, Meinardi F, et al. Role of sol-gel networking and fluorine doping in the silica Urbach energy[J]. Journal of Non-Crystalline Solids, 2011, 357(8-9): 1838-1841. doi: 10.1016/j.jnoncrysol.2010.12.051

    [6]

    Kranjčec M, Studenyak I P, Kurik M V. On the Urbach rule in non-crystalline solids[J]. Journal of Non-Crystalline Solids, 2009, 355(1): 54-57. doi: 10.1016/j.jnoncrysol.2008.03.051

    [7]

    Skuja L, Kajihara K, Ikuta Y, et al. Urbach absorption edge of silica: reduction of glassy disorder by fluorine doping[J]. Journal of Non-Crystalline Solids, 2004, 345-346: 328-331. doi: 10.1016/j.jnoncrysol.2004.08.038

    [8]

    Al-Ani S K J, Arshak K I, Hogarth C A. The optical absorption edge of amorphous thin films of silicon monoxide[J]. Journal of Materials Science, 1984, 19(6): 1737-1748. doi: 10.1007/BF00550243

    [9]

    Palik E D. Handbook of optical constants of solids[M]. Academic press, 1998: 749-759.

    [10]

    Guo C, Kong M D, Lin D W, et al. Determination of optical constants in DUV/VUV[J]. Chinese Optics Letters, 2013, 11(10): S10607.

    [11]

    郭春, 林大伟, 张云洞, 等.光度法确定LaF3薄膜光学常数[J].光学学报, 2011, 31(7): 0731001. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201107045

    Guo C, Lin D W, Zhang Y D, et al. Determination of optical constants of LaF3 films from spectrophotometric measurements[J]. Acta Optica Sinica, 2011, 31(7): 0731001. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201107045

    [12]

    黄昆.固体物理学[M].北京:高等教育出版社, 1988.

    Huang K. Solid State Physics[M]. Beijing: Higher Education Press, 1988.

    [13]

    Skuja L. Optically active oxygen-deficiency-related centers in amorphous silicon dioxide[J]. Journal of Non-Crystalline Solids, 1998, 239(1-3): 16-48. doi: 10.1016/S0022-3093(98)00720-0

    [14]

    Skuja L, Hosono H, Hirano M. Laser-induced color centers in silica[J]. Proceedings of SPIE, 2001, 4347: 155-168. doi: 10.1117/12.425020

    [15]

    Pacchioni G, Skuja L, Griscom D L. Defects in SiO2 and Related Dielectrics: Science and Technology[M]. Dordrecht: Springer, 2000: 73-116.

    [16]

    Revesz A G, Hughes H L. The structural aspects of non-crystalline SiO2 films on silicon: a review[J]. Journal of Non-Crystalline Solids, 2003, 328(1-3): 48-63. doi: 10.1016/S0022-3093(03)00467-8

  • 加载中

(10)

计量
  • 文章访问数:  12404
  • PDF下载数:  5913
  • 施引文献:  0
出版历程
收稿日期:  2018-04-05
修回日期:  2018-11-06
刊出日期:  2019-04-01

目录

/

返回文章
返回