Chen Weiliang, Zhang Jingyu. Dimension expansion of high-capacity optical data storage[J]. Opto-Electronic Engineering, 2019, 46(3): 180571. doi: 10.12086/oee.2019.180571
Citation: Chen Weiliang, Zhang Jingyu. Dimension expansion of high-capacity optical data storage[J]. Opto-Electronic Engineering, 2019, 46(3): 180571. doi: 10.12086/oee.2019.180571

Dimension expansion of high-capacity optical data storage

    Fund Project: Supported by Wuhan National Laboratory for Optoelectronics Director Fund (61432007)
More Information
  • Human beings are entering a Big Data era, which has significantly boosted the current digital economy and society. But in reality, all current data storage technologies and mediums can only store less than half of what we generate, which means most of the data will be forcibly lost if without breakthrough in high-capacity storage technologies. However, Ernst Abbe set a fundamental barrier that limits the smallest feature size of a recording voxel to approximately half of the wavelength. Alternatively, this limitation could be overcome by implementing multiplex technology. In this review, techniques employed various multiplex dimensions such as 3D space, polarization and wavelength are briefly introduced. Especially, we highlight the development history, current state of the art and urgent challenges of five-dimensional optical data storage based on laser-induced nanogratings.
  • 加载中
  • [1] The digitization of the world from edge to core. Digest Version[EB/OL]. (2018-11). https://www.seagate.com/cn/zh/our-story/data-age-2025.

    Google Scholar

    [2] Delforge P. America's data centers consuming and wasting growing amounts of energy[EB/OL]. (2015-02-06). https://www.nrdc.org/resources/americas-data-centers-consuming-and-wasting-growing-amounts-energy.

    Google Scholar

    [3] Gantz J, Reinsel D. The digital universe in 2020: big data, bigger digital shadows, and biggest growth in the far east[EB/OL]. (2018-12). https://www.emc.com/leadership/digital-universe/2012iview/index.htm.

    Google Scholar

    [4] Gu M, Li X P, Cao Y Y. Optical storage arrays: a perspective for future big data storage[J]. Light: Science & Applications, 2014, 3(5): e177.

    Google Scholar

    [5] Heanue J, Bashaw M, Hesselink L. Volume holographic storage and retrieval of digital data[J]. Science, 1994, 265(5173): 749-752. doi: 10.1126/science.265.5173.749

    CrossRef Google Scholar

    [6] Parthenopoulos D A, Rentzepis P M. Three-dimensional optical storage memory[J]. Science, 1989, 245(4920): 843-845. doi: 10.1126/science.245.4920.843

    CrossRef Google Scholar

    [7] Gan Z S, Cao Y Y, Evans R A, et al. Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size[J]. Nature Communications, 2013, 4: 2061. doi: 10.1038/ncomms3061

    CrossRef Google Scholar

    [8] 顾华荣, 赵瑱, 曹良才, 等.用二值空间光调制器实现多灰阶全息存储[J].光学学报, 2010, 30(7): 2080-2083.

    Google Scholar

    Gu H R, Zhao Z, Cao L C, et al. Multi-gray-level holographic storage using a binary spatial light modulator[J]. Acta Optica Sinica, 2010, 30(7): 2080-2083.

    Google Scholar

    [9] 赫明钊, 曹良才, 何庆声, 等.高性能光致聚合物材料与全息光存储[J].记录媒体技术, 2008(1): 60-64.

    Google Scholar

    Hao M Z, Cao L C, He Q S, et al. High performance photopolymer recording materials for holographic storage[J]. China Mediatech, 2008(1): 60-64

    Google Scholar

    [10] 王阳, 顾冬红, 干福熹.亚酞菁薄膜的光谱和光存储性质研究[J].光学学报, 2001, 21(8): 948-951. doi: 10.3321/j.issn:0253-2239.2001.08.012

    CrossRef Google Scholar

    Wang Y, Gu D H, Gan F X, Spectral and optical recording properties of a novel subphthalocyanine thin film[J]. Acta Optica Sinica, 2001, 21(8): 948-951. doi: 10.3321/j.issn:0253-2239.2001.08.012

    CrossRef Google Scholar

    [11] 干福熹, 王阳.突破光学衍射极限, 发展纳米光学和光子学[J].光学学报, 2011, 31(9): 0900104.

    Google Scholar

    Gan F X, Wang Y. Breaking through the optical diffraction limits, developing the Nano-optics and photonics[J]. Acta Optica Sinica, 2011, 31(9): 0900104.

    Google Scholar

    [12] 翟凤潇, 王阳, 吴谊群, 等.纳米光存储薄膜结构的光学性质[J].激光与光电子学进展, 2007, 44(12): 28-35.

    Google Scholar

    Zhai F X, Wang Y, Wu Y Q, et al. Optical properties of super-resolution near-field structure for optical Nano-storage[J]. Laser & Optoelectronics Progress, 2007, 44(12): 28-35.

    Google Scholar

    [13] 曹强, 严文瑞, 姚杰, 等.一种超大容量自动光盘库的设计与实现[J].红外与激光工程, 2016, 45(9): 28-35.

    Google Scholar

    Cao Q, Yan W R, Yao J, et al. Design and implementation of an ultra-large scale automatic optical disc library[J]. Infrared and Laser Engineering, 2016, 45(9): 28-35.

    Google Scholar

    [14] 严文瑞, 曹强, 姚杰, 等.一种面向大容量光盘库的新型文件系统[J].计算机研究与发展, 2015, 52(S1): 1-8.

    Google Scholar

    Yan W R, Cao Q, Yao J, et al. A novel file system for large-scale optical library[J]. Journal of Computer Research and Development, 2015, 52(S1): 1-8.

    Google Scholar

    [15] 唐毅, 裴京, 潘龙法, 等.一种新的多阶只读光存储方法的仿真分析和实验验证[J].光学学报, 2008, 28(7): 1353-1358. doi: 10.3321/j.issn:0253-2239.2008.07.026

    CrossRef Google Scholar

    Tang Y, Pei J, Pan L F, et al. Simulation analysis and experimental validation of a new multi-level read-only optical recording method[J]. Acta Optica Sinica, 2008, 28(7): 1353-1358. doi: 10.3321/j.issn:0253-2239.2008.07.026

    CrossRef Google Scholar

    [16] 唐毅, 裴京, 潘龙法, 等.波形调制多阶光盘的自适应阶次检测[J].光学学报, 2010, 30(4): 1130-1134.

    Google Scholar

    Tang Y, Pei J, Pan L F, et al. Adaptive level detection for multi-level optical disk using signal waveform modulation[J]. Acta Optica Sinica, 2010, 30(4): 1130-1134.

    Google Scholar

    [17] 李建华, 刘金鹏, 林枭, 等.体全息存储研究现状及发展趋势[J].中国激光, 2017, 44(10): 1000001.

    Google Scholar

    Li J H, Liu J P, Lin X, et al. Volume holographic data storage[J]. Chinese Journal of Lasers, 2017, 44(10): 1000001.

    Google Scholar

    [18] Wikipedia Contributors. Blu-ray[EB/OL]. (2019-02). https://en.wikipedia.org/wiki/Blu-ray.

    Google Scholar

    [19] Alasfar S, Ishikawa M, Kawata Y, et al. Polarization-multiplexed optical memory with urethane-urea copolymers[J]. Applied Optics, 1999, 38(29): 6201-6204. doi: 10.1364/AO.38.006201

    CrossRef Google Scholar

    [20] Ando E, Miyazaki J, Morimoto K, et al. J-aggregation of photochromic spiropyran in Langmuir-Blodgett films[J]. Thin Solid Films, 1985, 133(1-4): 21-28. doi: 10.1016/0040-6090(85)90421-3

    CrossRef Google Scholar

    [21] Royon A, Bourhis K, Bellec M, et al. Silver clusters embedded in glass as a perennial high capacity optical recording medium[J]. Advanced Materials, 2010, 22(46): 5282-5286. doi: 10.1002/adma.201002413

    CrossRef Google Scholar

    [22] Zijlstra P, Chon J W M, Gu M. Five-dimensional optical recording mediated by surface plasmons in gold nanorods[J]. Nature, 2009, 459(7245): 410-413. doi: 10.1038/nature08053

    CrossRef Google Scholar

    [23] Zhang J Y, Gecevičius M, Beresna M, et al. Seemingly unlimited lifetime data storage in nanostructured glass[J]. Physical Review Letters, 2014, 112(3): 033901. doi: 10.1103/PhysRevLett.112.033901

    CrossRef Google Scholar

    [24] Zhou Z Q, Hua Y L, Liu X, et al. Quantum storage of three-dimensional orbital-angular-momentum entanglement in a crystal[J]. Physical Review Letters, 2015, 115(7): 070502. doi: 10.1103/PhysRevLett.115.070502

    CrossRef Google Scholar

    [25] Gu M, Li X P. The road to multi-dimensional bit-by-bit optical data storage[J]. Optics and Photonics News, 2010, 21(7): 28-33. doi: 10.1364/OPN.21.7.000028

    CrossRef Google Scholar

    [26] Hirshberg Y. Reversible formation and eradication of colors by irradiation at low temperatures. A photochemical memory model[J]. Journal of the American Chemical Society, 1956, 78(10): 2304-2312. doi: 10.1021/ja01591a075

    CrossRef Google Scholar

    [27] Strickler J H, Webb W W. Three-dimensional optical data storage in refractive media by two-photon point excitation[J]. Optics Letters, 1991, 16(22): 1780-1782. doi: 10.1364/OL.16.001780

    CrossRef Google Scholar

    [28] Dvornikov A S, Rentzepis P M. Anthracene monomer-dimer photochemistry: High density 3D optical storage memory[J]. Research on Chemical Intermediates, 1996, 22(2): 115-128. doi: 10.1163/156856796X00566

    CrossRef Google Scholar

    [29] Yokoyama Y, Yamane T, Kurita Y. Photochromism of a protonated 5-dimethylaminoindolylfulgide: A model of a non-destructive readout for a photon mode optical memory[J]. Journal of the Chemical Society, Chemical Communications, 1991(24): 1722-1724. doi: 10.1039/c39910001722

    CrossRef Google Scholar

    [30] Day D, Gu M, Smallridge A. Use of two-photon excitation for erasable-rewritable three-dimensional bit optical data storage in a photorefractive polymer[J]. Optics Letters, 1999, 24(14): 948-950. doi: 10.1364/OL.24.000948

    CrossRef Google Scholar

    [31] Cumpston B H, Ananthavel S P, Barlow S, et al. Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication[J]. Nature, 1999, 398(6722): 51-54. doi: 10.1038/17989

    CrossRef Google Scholar

    [32] Kawata Y, Ishitobi H, Kawata S. Use of two-photon absorption in a photorefractive crystal for three-dimensional optical memory[J]. Optics Letters, 1998, 23(10): 756-758. doi: 10.1364/OL.23.000756

    CrossRef Google Scholar

    [33] Glezer E N, Milosavljevic M, Huang L, et al. Three-dimensional optical storage inside transparent materials[J]. Optics Letters, 1996, 21(24): 2023-2025. doi: 10.1364/OL.21.002023

    CrossRef Google Scholar

    [34] Miura K, Qiu J R, Fujiwara S, et al. Three-dimensional optical memory with rewriteable and ultrahigh density using the valence-state change of samarium ions[J]. Applied Physics Letters, 2002, 80(13): 2263-2265. doi: 10.1063/1.1459769

    CrossRef Google Scholar

    [35] Kallepalli D L N, Alshehri A M, Marquez D T, et al. Ultra-high density optical data storage in common transparent plastics[J]. Scientific Reports, 2016, 6: 26163. doi: 10.1038/srep26163

    CrossRef Google Scholar

    [36] Dvornikov A S, Walker E P, Rentzepis P M. Two-photon three-dimensional optical storage memory[J]. The Journal of Physical Chemistry A, 2009, 113(49): 13633-13644. doi: 10.1021/jp905655z

    CrossRef Google Scholar

    [37] Walker E, Rentzepis P M. Two-photon technology: A new dimension[J]. Nature Photonics, 2008, 2(7): 406-408. doi: 10.1038/nphoton.2008.121

    CrossRef Google Scholar

    [38] Xu X H, Yu X, Wang T, et al. Rewritable LPL in Sm3+-doped borate glass with the assistance of defects induced by femtosecond laser[J]. Optical Materials Express, 2016, 6(2): 402-408. doi: 10.1364/OME.6.000402

    CrossRef Google Scholar

    [39] Qiu J R, Miura K, Suzuki T, et al. Permanent photoreduction of Sm3+ to Sm2+ inside a sodium aluminoborate glass by an infrared femtosecond pulsed laser[J]. Applied Physics Letters, 1999, 74(1): 10. doi: 10.1063/1.123117

    CrossRef Google Scholar

    [40] Riesen N, Pan X Z, Badek K, et al. Towards rewritable multilevel optical data storage in single nanocrystals[J]. Optics Express, 2018, 26(9): 12266-12276. doi: 10.1364/OE.26.012266

    CrossRef Google Scholar

    [41] Hibino J, Moriyama K, Suzuki M A, et al. Aggregation control of photochromic spiropyrans in Langmuir-Blodgett films[J]. Thin Solid Films, 1992, 210-211: 562-564. doi: 10.1016/0040-6090(92)90342-9

    CrossRef Google Scholar

    [42] Jensen T R, Malinsky M D, Haynes C L, et al. Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles[J]. The Journal of Physical Chemistry B, 2000, 104(45): 10549-10556. doi: 10.1021/jp002435e

    CrossRef Google Scholar

    [43] Ditlbacher H, Krenn J R, Lamprecht B, et al. Spectrally coded optical data storage by metal nanoparticles[J]. Optics Letters, 2000, 25(8): 563-565. doi: 10.1364/OL.25.000563

    CrossRef Google Scholar

    [44] Pham H H, Gourevich I, Oh J K, et al. A multidye nanostructured material for optical data storage and security data encryption[J]. Advanced Materials, 2004, 16(6): 516-520. doi: 10.1002/(ISSN)1521-4095

    CrossRef Google Scholar

    [45] Li X P, Chon J W M, Wu S H, et al. Rewritable polarization-encoded multilayer data storage in 2, 5-dimethyl-4-(p-nitrophenylazo)anisole doped polymer[J]. Optics Letters, 2007, 32(3): 277-279. doi: 10.1364/OL.32.000277

    CrossRef Google Scholar

    [46] Niidome Y, Urakawa S, Kawahara M, et al. Dichroism of poly(vinylalcohol) films containing gold nanorods induced by polarized pulsed-laser irradiation[J]. Japanese Journal of Applied Physics, 2003, 42(4A): 1749-1750.

    Google Scholar

    [47] Li X P, Lan T H, Tien C H, et al. Three-dimensional orientation-unlimited polarization encryption by a single optically configured vectorial beam[J]. Nature Communications, 2012, 3: 998. doi: 10.1038/ncomms2006

    CrossRef Google Scholar

    [48] Zhang Q M, Xia Z L, Cheng Y B, et al. High-capacity optical long data memory based on enhanced Young's modulus in nanoplasmonic hybrid glass composites[J]. Nature Communications, 2018, 9: 1183. doi: 10.1038/s41467-018-03589-y

    CrossRef Google Scholar

    [49] Dai Q F, Ouyang M, Yuan W G, et al. Encoding random hot spots of a volume gold nanorod assembly for ultralow energy memory[J]. Advanced Materials, 2017, 29(35): 1701918. doi: 10.1002/adma.201701918

    CrossRef Google Scholar

    [50] Sudrie L, Franco M, Prade B, et al. Writing of permanent birefringent microlayers in bulk fused silica with femtosecond laser pulses[J]. Optics Communications, 1999, 171(4-6): 279-284. doi: 10.1016/S0030-4018(99)00562-3

    CrossRef Google Scholar

    [51] Kazansky P G, Inouye H, Mitsuyu T, et al. Anomalous anisotropic light scattering in Ge-doped silica glass[J]. Physical Review Letters, 1999, 82(10): 2199-2202. doi: 10.1103/PhysRevLett.82.2199

    CrossRef Google Scholar

    [52] Shimotsuma Y, Kazansky P G, Qiu J R, et al. Self-organized nanogratings in glass irradiated by ultrashort light pulses[J]. Physical Review Letters, 2003, 91(24): 247405. doi: 10.1103/PhysRevLett.91.247405

    CrossRef Google Scholar

    [53] Lancry M, Poumellec B, Canning J, et al. Ultrafast nanoporous silica formation driven by femtosecond laser irradiation[J]. Laser & Photonics Reviews, 2013, 7(6): 953-962. doi: 10.1002/lpor.201300043

    CrossRef Google Scholar

    [54] Bricchi E, Kazansky P G. Extraordinary stability of anisotropic femtosecond direct-written structures embedded in silica glass[J]. Applied Physics Letters, 2006, 88(11): 111119. doi: 10.1063/1.2185587

    CrossRef Google Scholar

    [55] Shimotsuma Y, Sakakura M, Kazansky P G, et al. Ultrafast manipulation of self-assembled form birefringence in glass[J]. Advanced Materials, 2010, 22(36): 4039-4043. doi: 10.1002/adma.201000921

    CrossRef Google Scholar

    [56] Taylor R S, Hnatovsky C, Simova E, et al. Femtosecond laser erasing and rewriting of self-organized planar nanocracks in fused silica glass[J]. Optics Letters, 2007, 32(19): 2888-2890. doi: 10.1364/OL.32.002888

    CrossRef Google Scholar

    [57] Beresna M, Gecevičius M, Kazansky P G, et al. Exciton mediated self-organization in glass driven by ultrashort light pulses[J]. Applied Physics Letters, 2012, 101(5): 053120. doi: 10.1063/1.4742899

    CrossRef Google Scholar

    [58] Hnatovsky C, Shvedov V G, Shostka N, et al. Polarization-dependent ablation of silicon using tightly focused femtosecond laser vortex pulses[J]. Optics Letters, 2012, 37(2): 226-228. doi: 10.1364/OL.37.000226

    CrossRef Google Scholar

    [59] Zhang J, Čerkauskaitė A, Drevinskas R, et al. Eternal 5D data storage by ultrafast laser writing in glass[J]. Proceedings of SPIE, 2016, 9736: 97360U. doi: 10.1117/12.2220600

    CrossRef Google Scholar

    [60] Patel A, Tikhonchuk V T, Zhang J Y, et al. Non-paraxial polarization spatio-temporal coupling in ultrafast laser material processing[J]. Laser & Photonics Reviews, 2017, 11(3): 1600290. doi: 10.1002/lpor.201600290

    CrossRef Google Scholar

    [61] Richter S, Heinrich M, D ring S, et al. Nanogratings in fused silica: Formation, control, and applications[J]. Journal of Laser Applications, 2012, 24(4): 042008. doi: 10.2351/1.4718561

    CrossRef Google Scholar

    [62] Okhrimchuk A, Fedotov S, Glebov I, et al. Single shot laser writing with sub-nanosecond and nanosecond bursts of femtosecond pulses[J]. Scientific Reports, 2017, 7: 16563. doi: 10.1038/s41598-017-16850-z

    CrossRef Google Scholar

    [63] Lipatiev A S, Fedotov S S, Okhrimchuk A G, et al. Multilevel data writing in nanoporous glass by a few femtosecond laser pulses[J]. Applied Optics, 2018, 57(4): 978-982. doi: 10.1364/AO.57.000978

    CrossRef Google Scholar

    [64] 周谷成, 范艳艳, 肖义军. DNA存储技术的研究概述[J].生物学通报, 2018, 53(8): 10-12. doi: 10.3969/j.issn.0006-3193.2018.08.004

    CrossRef Google Scholar

    [65] Wikipedia Contributors. 5D optical data storage[EB/OL]. (2019-02). https://en.wikipedia.org/wiki/5D_optical_data_storage.

    Google Scholar

  • Overview: Human beings are entering a big data era, which has significantly boosted the current digital economy and society. According to an estimation by the International Data Corporation (IDC), the information generated and consumed is nearly doubled every two year. Human being have already generated data onto an amount of 35 ZB (1 ZB=1000 EB=1000, 000 PB=1000, 000, 000 TB=1000, 000, 000, 000 GB) globally in 2017 and in the year of 2020 the total amount will reach 44 ZB. However, all current data storage technologies and mediums can only store less than half of this amount, which means most of the data will be forcibly lost if without breakthrough in high-capacity storage technologies. The infrastructure of the current information technology and the sustainability of the current information economy has been constantly challenged by the thirst for more storage capacities as well as low energy consumption. These challenges set a fundamental obstacle to the longevity and sustainability of the current information technology. Known for its green features, optical data storage is regarded as an excellent candidate for long-term data archiving. However, Ernst Abbe set a fundamental barrier that limits the smallest feature size of a recording cell to approximately half of the wavelength, leading to a capacity of hundreds of Gigabytes per disc. This capacity limitation could be overcome by implementing multiplex technology. This technology enables the potential for storing more than one bit of data in a single memory cell. It can be applied to materials which exhibit sensitivity to not only the intensity but also other parameters of light like polarization, wavelength, and fluorescence. Limited by the material response, only five multiplex dimensions have been achieved in gold nanorods embedded polymer and fused silica glass. The nanogratings, generated by femtosecond laser writing in fused silica, behave as a uniaxial optical crystal with negative birefringence. The two parameters of birefringence, the slow axis orientation and retardation can be independently controlled by the polarization and intensity of the incident laser beam. Thanks to the effect of multi-photon excitation, 3D space of the medium volume can be simultaneously utilized by focusing femtosecond laser in fused silica. Such memory, encoding data in 5 dimensions, is capable of recording 360 TB data per disc for billions of years. It is believed that 5D optical data storage based on nanogratings in fused silica opens a new era of eternal data storage.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(1)

Article Metrics

Article views(9846) PDF downloads(4368) Cited by(0)

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint