Ouyang Xu, Xu Yi, Xian Mingcong, et al. Encoding disorder gold nanorods for multi-dimensional optical data storage[J]. Opto-Electronic Engineering, 2019, 46(3): 180584. doi: 10.12086/oee.2019.180584
Citation: Ouyang Xu, Xu Yi, Xian Mingcong, et al. Encoding disorder gold nanorods for multi-dimensional optical data storage[J]. Opto-Electronic Engineering, 2019, 46(3): 180584. doi: 10.12086/oee.2019.180584

Encoding disorder gold nanorods for multi-dimensional optical data storage

    Fund Project: Supported by National Key R&D Program of China (YS2018YFB110012), National Natural Science Foundation of China (NSFC) (11674130, 91750110 and 61522504), Guangdong Provincial Innovation and Entrepreneurship Project (2016ZT06D081), the Natural Science Foundation of Guangdong Province, China (2016A030306016 and 2016TQ03X981), and the Pearl River Nova Program of Guangzhou (201806010040)
More Information
  • The digital data created by human being grows exponentially in time. Conventional magnetic storage technologies are difficult to meet this challenge. It means that new storage technologies with higher capacity, higher security and longer storage time should be developed to meet the challenge in information age. With the invention of lasers and the rapid development of nanotechnology, multidimensional optical data storage based on the polarization and wavelength dependent responses of gold nanorods was demonstrated to be capable of meeting these requirements. We will review the recent progresses about five-dimensional optical data storage and multilevel storage utilizing disorder gold nanorod from the structured matter point of view and super resolution storage from the structured light point of view, respectively. We also provide outlooks for how to further increase the capacity of the five dimensional optical data storage and our future prospective of this technology.
  • 加载中
  • [1] Seagete Technology LLC. Data age 2025 - the digitization of the world[EB/OL]. 2018. https://www.seagate.com/our-story/data-age-2025/

    Google Scholar

    [2] Horimai H, Tan X D. Collinear technology for a holographic versatile disk[J]. Applied Optics, 2006, 45(5): 910-914. doi: 10.1364/AO.45.000910

    CrossRef Google Scholar

    [3] Tan X D, Lin X, Wu A A, et al. High density collinear holographic data storage system[J]. Frontiers of Optoelectronics, 2014, 7(4): 443-449. doi: 10.1007/s12200-014-0399-1

    CrossRef Google Scholar

    [4] Lin X, Huang Y, Shimura T, et al. Fast non-interferometric iterative phase retrieval for holographic data storage[J]. Optics Express, 2017, 25(25): 30905-30915. doi: 10.1364/OE.25.030905

    CrossRef Google Scholar

    [5] Mansuripur M. Effects of high-numerical-aperture focusing on the state of polarization in optical and magneto-optic data storage systems[J]. Applied Optics, 1991, 30(22): 3154-3162. doi: 10.1364/AO.30.003154

    CrossRef Google Scholar

    [6] Mansuripur M, Zakharian A R, Lesuffleur A, et al. Plasmonic nano-structures for optical data storage[J]. Optics Express, 2009, 17(16): 14001-14014. doi: 10.1364/OE.17.014001

    CrossRef Google Scholar

    [7] Mansuripur M, Sincerbox G. Principles and techniques of optical data storage[J]. Proceedings of the IEEE, 1997, 85(11): 1780-1796. doi: 10.1109/5.649657

    CrossRef Google Scholar

    [8] Airy G B. On the diffraction of an object-glass with circular aperture[J]. Transactions of the Cambridge Philosophical Society, 1835, 5: 283-291.

    Google Scholar

    [9] Gu M, Li X P, Cao Y Y. Optical storage arrays: a perspective for future big data storage[J]. Light: Science & Applications, 2014, 3(5): e177.

    Google Scholar

    [10] Gu M, Zhang Q M, Lamon S. Nanomaterials for optical data storage[J]. Nature Reviews Materials, 2016, 1(12): 16070. doi: 10.1038/natrevmats.2016.70

    CrossRef Google Scholar

    [11] Oh W Y, Yun S H, Vakoc B J, et al. High-speed polarization sensitive optical frequency domain imaging with frequency multiplexing[J]. Optics Express, 2008, 16(2): 1096-1103. doi: 10.1364/OE.16.001096

    CrossRef Google Scholar

    [12] Aiki K, Nakamura M, Umeda J. Frequency multiplexing light source with monolithically integrated distributed-feedback diode lasers[J]. Applied Physics Letters, 1976, 29(8): 506-508. doi: 10.1063/1.89140

    CrossRef Google Scholar

    [13] Chon J W M, Bullen C, Zijlstra P, et al. Spectral encoding on Gold nanorods doped in a silica sol-gel matrix and its application to high-density optical data storage[J]. Advanced Functional Materials, 2007, 17(6): 875-880. doi: 10.1002/(ISSN)1616-3028

    CrossRef Google Scholar

    [14] Zijlstra P, Chon J W M, Gu M. Five-dimensional optical recording mediated by surface plasmons in gold nanorods[J]. Nature, 2009, 459(7245): 410-413. doi: 10.1038/nature08053

    CrossRef Google Scholar

    [15] Dai Q F, Ouyang M, Yuan W G, et al. Encoding random hot spots of a volume gold nanorod assembly for ultralow energy memory[J]. Advanced Materials, 2017, 29(35): 1701918. doi: 10.1002/adma.201701918

    CrossRef Google Scholar

    [16] Li X P, Lan T H, Tien C H, et al. Three-dimensional orientation-unlimited polarization encryption by a single optically configured vectorial beam[J]. Nature Communications, 2012, 3: 998. doi: 10.1038/ncomms2006

    CrossRef Google Scholar

    [17] Taylor A B, Michaux P, Mohsin A S M, et al. Electron-beam lithography of plasmonic nanorod arrays for multilayered optical storage[J]. Optics Express, 2014, 22(11): 13234-13243. doi: 10.1364/OE.22.013234

    CrossRef Google Scholar

    [18] Li X P, Chon J W M, Wu S H, et al. Rewritable polarization-encoded multilayer data storage in 2, 5-dimethyl-4-(p-nitrophenylazo)anisole doped polymer[J]. Optics Letters, 2007, 32(3): 277-279. doi: 10.1364/OL.32.000277

    CrossRef Google Scholar

    [19] Zheng Y B, Liu H Y, Xiang J, et al. Hot luminescence from gold nanoflowers and its application in high-density optical data storage[J]. Optics Express, 2017, 25(8): 9262-9275. doi: 10.1364/OE.25.009262

    CrossRef Google Scholar

    [20] Ren H R, Li X P, Gu M. Polarization-multiplexed multifocal arrays by a π-phase-step-modulated azimuthally polarized beam[J]. Optics Letters, 2014, 39(24): 6771-6774. doi: 10.1364/OL.39.006771

    CrossRef Google Scholar

    [21] Wang Z H, Hu Y S, Xiong X, et al. Encoding and display with stereo split-ring resonator arrays[J]. Optics Letters, 2017, 42(6): 1153-1156. doi: 10.1364/OL.42.001153

    CrossRef Google Scholar

    [22] Lu G W, Abedin K S, Miyazaki T. All-optical RZ-DPSK WDM to RZ-DQPSK phase multiplexing using four-wave mixing in highly nonlinear fiber[J]. IEEE Photonics Technology Letters, 2007, 19(21): 1699-1701. doi: 10.1109/LPT.2007.905199

    CrossRef Google Scholar

    [23] Yun H, Lee S Y, Hong K, et al. Plasmonic cavity-apertures as dynamic pixels for the simultaneous control of colour and intensity[J]. Nature Communications, 2015, 6: 7133. doi: 10.1038/ncomms8133

    CrossRef Google Scholar

    [24] Ren H R, Li X P, Zhang Q M, et al. On-chip noninterference angular momentum multiplexing of broadband light[J]. Science, 2016, 352(6287): 805-809. doi: 10.1126/science.aaf1112

    CrossRef Google Scholar

    [25] Mehmood M Q, Mei S T, Hussain S, et al. Visible-frequency metasurface for structuring and spatially multiplexing optical vortices[J]. Advanced Materials, 2016, 28(13): 2533-2539. doi: 10.1002/adma.201504532

    CrossRef Google Scholar

    [26] Ding Y H, Xu J, Da Ros F, et al. On-chip two-mode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer[J]. Optics Express, 2013, 21(8): 10376-10382. doi: 10.1364/OE.21.010376

    CrossRef Google Scholar

    [27] Carpenter J, Wilkinson T D. All optical mode-multiplexing using holography and multimode fiber couplers[J]. Journal of Lightwave Technology, 2012, 30(12): 1978-1984. doi: 10.1109/JLT.2012.2191586

    CrossRef Google Scholar

    [28] Hong M H, Luk'yanchuk B, Huang S M, et al. Femtosecond laser application for high capacity optical data storage[J]. Applied Physics A, 2004, 79(4-6): 791-794. doi: 10.1007/s00339-004-2630-1

    CrossRef Google Scholar

    [29] Taylor A B, Kim J, Chon J W M. Detuned surface plasmon resonance scattering of gold nanorods for continuous wave multilayered optical recording and readout[J]. Optics Express, 2012, 20(5): 5069-5081. doi: 10.1364/OE.20.005069

    CrossRef Google Scholar

    [30] Li X P, Chon J W M, Evans R A, et al. Two-photon energy transfer enhanced three-dimensional optical memory in quantum-dot and azo-dye doped polymers[J]. Applied Physics Letters, 2008, 92(6): 063309. doi: 10.1063/1.2857497

    CrossRef Google Scholar

    [31] Li X P, Bullen C, Chon J W M, et al. Two-photon-induced three-dimensional optical data storage in CdS quantum-dot doped photopolymer[J]. Applied Physics Letters, 2007, 90(16): 161116. doi: 10.1063/1.2724902

    CrossRef Google Scholar

    [32] Chen H J, Lei S, Li Q, et al. Gold nanorods and their plasmonic properties[J]. Chemical Society Reviews, 2013, 42(7): 2679-2724. doi: 10.1039/C2CS35367A

    CrossRef Google Scholar

    [33] Fang Z Y, Zhu X. Plasmonics in nanostructures[J]. Advanced Materials, 2013, 25(28): 3840-3856. doi: 10.1002/adma.v25.28

    CrossRef Google Scholar

    [34] Fang Z Y, Fan L R, Lin C F, et al. Plasmonic coupling of bow tie antennas with Ag nanowire[J]. Nano Letters, 2011, 11(4): 1676-1680. doi: 10.1021/nl200179y

    CrossRef Google Scholar

    [35] 林佼, 王大鹏, 司光远.表面等离子激元超构表面的研究进展[J].光电工程, 2017, 44(3): 289-296. doi: 10.3969/j.issn.1003-501X.2017.03.003

    CrossRef Google Scholar

    Lin J, Wang D P, Si G Y. Recent progress on plasmonic metasurfaces[J]. Opto-Electronic Engineering, 2017, 44(3): 289-296. doi: 10.3969/j.issn.1003-501X.2017.03.003

    CrossRef Google Scholar

    [36] Li X P, Ren H R, Chen X, et al. Athermally photoreduced graphene oxides for three-dimensional holographic images[J]. Nature Communications, 2015, 6: 6984. doi: 10.1038/ncomms7984

    CrossRef Google Scholar

    [37] Hell S W, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy[J]. Optics Letters, 1994, 19(11): 780-782. doi: 10.1364/OL.19.000780

    CrossRef Google Scholar

    [38] 秦飞, 李向平, 洪明辉.从超振荡透镜到超临界透镜:超越衍射极限的光场调制[J].光电工程, 2017, 44(8): 757-771. doi: 10.3969/j.issn.1003-501X.2017.08.001

    CrossRef Google Scholar

    Qin F, Li X P, Hong M H. From super-oscillatory lens to super-critical lens:surpassing the diffraction limit via light field modulation[J]. Opto-Electronic Engineering, 2017, 44(8): 757-771. doi: 10.3969/j.issn.1003-501X.2017.08.001

    CrossRef Google Scholar

    [39] Gao P, Yao N, Wang C T, et al. Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens[J]. Applied Physics Letters, 2015, 106(9): 093110. doi: 10.1063/1.4914000

    CrossRef Google Scholar

    [40] Tang D L, Wang C T, Zhao Z Y, et al. Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing[J]. Laser & Photonics Reviews, 2015, 9(6): 713-719.

    Google Scholar

    [41] 曹耀宇, 谢飞, 张鹏达, 等.双光束超分辨激光直写纳米加工技术[J].光电工程, 2017, 44(12): 1133-1145. doi: 10.3969/j.issn.1003-501X.2017.12.001

    CrossRef Google Scholar

    Cao Y Y, Xie F, Zhang P D, et al. Dual-beam super-resolution direct laser writing nanofabrication technology[J]. Opto-Electronic Engineering, 2017, 44(12): 1133-1145. doi: 10.3969/j.issn.1003-501X.2017.12.001

    CrossRef Google Scholar

    [42] Gan Z S, Cao Y Y, Evans R A, et al. Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size[J]. Nature Communications, 2013, 4: 2061. doi: 10.1038/ncomms3061

    CrossRef Google Scholar

    [43] Cao Y Y, Li X P, Gu M. Super-resolution nanofabrication with metal-ion doped hybrid material through an optical dual-beam approach[J]. Applied Physics Letters, 2014, 105(26): 263102. doi: 10.1063/1.4905056

    CrossRef Google Scholar

    [44] Li X P, Cao Y Y, Tian N, et al. Multifocal optical nanoscopy for big data recording at 30 TB capacity and gigabits/second data rate[J]. Optica, 2015, 2(6): 567-570. doi: 10.1364/OPTICA.2.000567

    CrossRef Google Scholar

    [45] Wang Q, Maddock J, Rogers E T F, et al. 1.7 Gbit/in.2 gray-scale continuous-phase-change femtosecond image storage[J]. Applied Physics Letters, 2014, 104(12): 121105. doi: 10.1063/1.4869575

    CrossRef Google Scholar

    [46] Chu Y H, Xiao H M, Wang G, et al. Randomly distributed plasmonic hot spots for multilevel optical storage[J]. The Journal of Physical Chemistry C, 2018, 122(27): 15652-15658. doi: 10.1021/acs.jpcc.8b03710

    CrossRef Google Scholar

    [47] Cui Y, Phang I Y, Hegde R S, et al. Plasmonic silver nanowire structures for two-dimensional multiple-digit molecular data storage application[J]. ACS Photonics, 2014, 1(7): 631-637. doi: 10.1021/ph5001154

    CrossRef Google Scholar

    [48] Zhou Y, Han S T, Sonar P, et al. Nonvolatile multilevel data storage memory device from controlled ambipolar charge trapping mechanism[J]. Scientific Reports, 2013, 3: 2319. doi: 10.1038/srep02319

    CrossRef Google Scholar

    [49] Lee J S, Kim Y M, Kwon J H, et al. Multilevel data storage memory devices based on the controlled capacitive coupling of trapped electrons[J]. Advanced Materials, 2011, 23(18): 2064-2068. doi: 10.1002/adma.v23.18

    CrossRef Google Scholar

    [50] Zhang C Y, Xu Y, Liu J, et al. Lighting up silicon nanoparticles with Mie resonances[J]. Nature Communications, 2018, 9: 2964. doi: 10.1038/s41467-018-05394-z

    CrossRef Google Scholar

    [51] Feng T H, Xu Y, Zhang W, et al. Ideal magnetic dipole scattering[J]. Physical Review Letters, 2017, 118(17): 173901. doi: 10.1103/PhysRevLett.118.173901

    CrossRef Google Scholar

    [52] Chen L, Li G C, Liu G Y, et al. Sensing the moving direction, position, size, and material type of nanoparticles with the two-photon-induced luminescence of a single gold nanorod[J]. The Journal of Physical Chemistry C, 2013, 117(39): 20146-20153. doi: 10.1021/jp405403g

    CrossRef Google Scholar

    [53] Taylor A B, Siddiquee A M, Chon J W M. Below melting point photothermal reshaping of single gold nanorods driven by surface diffusion[J]. ACS Nano, 2014, 8(12): 12071-12079. doi: 10.1021/nn5055283

    CrossRef Google Scholar

    [54] Anderson P W. Absence of diffusion in certain random lattices[J]. Physical Review, 1958, 109(5): 1492-1505. doi: 10.1103/PhysRev.109.1492

    CrossRef Google Scholar

    [55] Xu H X, Bjerneld E J, Käll M, et al. Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering[J]. Physical Review Letters, 1999, 83(21): 4357-4360. doi: 10.1103/PhysRevLett.83.4357

    CrossRef Google Scholar

    [56] Ghenuche P, Cherukulappurath S, Taminiau T H, et al. Spectroscopic mode mapping of resonant plasmon nanoantennas[J]. Physical Review Letters, 2008, 101(11): 116805. doi: 10.1103/PhysRevLett.101.116805

    CrossRef Google Scholar

    [57] Viarbitskaya S, Teulle A, Marty R, et al. Tailoring and imaging the plasmonic local density of states in crystalline nanoprisms[J]. Nature Materials, 2013, 12(5): 426-432. doi: 10.1038/nmat3581

    CrossRef Google Scholar

    [58] Li J X, Xu Y, Dai Q F, et al. Manipulating light-matter interaction in a gold nanorod assembly by plasmonic coupling[J]. Laser & Photonics Reviews, 2016, 10(5): 826-834.

    Google Scholar

    [59] Zhang Q M, Xia Z L, Cheng Y B, et al. High-capacity optical long data memory based on enhanced Young's modulus in nanoplasmonic hybrid glass composites[J]. Nature Communications, 2018, 9: 1183. doi: 10.1038/s41467-018-03589-y

    CrossRef Google Scholar

    [60] Ouyang X, Xu Y, Feng Z W, et al. Polychromatic and porized multilevel optical data storage[J]. Nanoscale, 2019, 11(5): 2447-2452. doi: 10.1039/C8NR09192G

    CrossRef Google Scholar

  • Overview: The digital data created by human being grows exponentially in time. Conventional magnetic storage technologies are difficult to meet this challenge. It means that new storage technologies with higher capacity, higher security and longer storage time should be developed to meet such challenge in information era. With the invention of lasers and the rapid development of nanotechnology, optical data storage technology based on light-matter interaction was shown to be a potential solution to this end. However, commercial optical data storage technologies are currently difficult to meet the increasing requirement for big data storage. Researchers are going to explore new means to further increase storage capacity to meet the growing requirements for massive data storage. For example, the capacities of multi-dimensional optical data storage, super-resolution optical data storage and multi-level optical data storage technologies were demonstrated to be much larger than traditional optical storage technologies. Herein, we review the recent progresses of multi-dimensional optical data storage, super-resolution optical data storage and multi-level optical data storage technology, with the focus on multi-dimensional optical storage technology. The gold nanorod (GNR) shows unique properties of a longitudinal surface plasmon resonance. By using the wavelength and polarization dependent responses of GNRs, five-dimensional (the wavelength and polarization of light and the three spatial dimensions) optical data storage has been demonstrated with TB scale storage capacity for the same volume of a DVD disc. In order to increase the number of information channels in the focused spot volume for this kind of optical storage technology, the intuitive approach is to increase the number of GNRs per unit volume, which inevitably increase the coupling strength among GNRs. Therefore, hot spots will be formed in the small gaps among GNRs. As a result, rather than using the response of a single GNR, the polarization and wavelength sensitivity of random hot spots in a volume GNR assembly can be used to encoded information and realize multi-dimensional data storage. At the same time, the plasmonic coupling among GNRs can also significantly enhance linear absorption and two-photon induced luminescence of the GNRs. As a result, five-dimensional optical data storage by encoding random hot spots of a volume GNR can be realized by using an ultralow energy. This technology improves significantly both the quality and capacity of optical data storage. We also provide outlooks for how to further increase the capacity of the five dimensional optical data storage and our future prospective of this technology.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Article Metrics

Article views(21445) PDF downloads(3314) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint