应用于高密度存储的偏光全息技术研究进展

魏然, 臧金亮, 刘颖, 等. 应用于高密度存储的偏光全息技术研究进展[J]. 光电工程, 2019, 46(3): 180598. doi: 10.12086/oee.2019.180598
引用本文: 魏然, 臧金亮, 刘颖, 等. 应用于高密度存储的偏光全息技术研究进展[J]. 光电工程, 2019, 46(3): 180598. doi: 10.12086/oee.2019.180598
Wei Ran, Zang Jinliang, Liu Ying, et al. Review on polarization holography for high density storage[J]. Opto-Electronic Engineering, 2019, 46(3): 180598. doi: 10.12086/oee.2019.180598
Citation: Wei Ran, Zang Jinliang, Liu Ying, et al. Review on polarization holography for high density storage[J]. Opto-Electronic Engineering, 2019, 46(3): 180598. doi: 10.12086/oee.2019.180598

应用于高密度存储的偏光全息技术研究进展

  • 基金项目:
    国家自然科学基金项目(61475079,61675020);中国博士后科学基金项目(2017M620635)
详细信息
    作者简介:
    通讯作者: 臧金亮(1987-),男,博士,博士后,主要从事偏光全息理论及应用的研究。E-mail:jlzang@bit.edu.cn 谭小地(1962-),男,博士,教授,主要研究光学全息、光子晶体、液晶及三维立体显示技术等。E-mail:xtan@fjnu.edu.cn
  • 中图分类号: O436.3;TP333

Review on polarization holography for high density storage

  • Fund Project: Supported by National Natural Science Foundation of China (NSFC) (61475079, 61675020) and China Postdoctoral Science Foundation (2017M620635)
More Information
  • 偏光全息术通过记录两束偏振光干涉形成的偏振光栅,可以把偏振光信息存储在偏振敏感材料当中。偏光全息把传统全息术中长期被忽视的光波偏振信息加以利用,在加大了存储容量的同时,也具有了许多独特的性质。本文简要介绍了偏光全息的发展历程,描述了基于张量的偏光全息理论及其一些推论,然后对偏光全息在数据存储领域的应用作了介绍,并做出展望。

  • Overview: Optical data storage is suitable and economical for a data center and an archive storage system with the advantages of long lifetime for storing digital data. However, traditional optical data storage methods including CDs, DVDs, and Blu-ray Discs face technical obstacles in obtaining further large-capacity optical data storage. Holographic optical data storage is a potential technology in the next generation of optical storage due to its high capacity for data storage and its high speed of data transmission.

    In this paper, the concept of polarization holography is firstly introduced. In contrast to conventional holography which record the intensity gratings formed by two waves with same polarization, polarization holography records polarization gratings fabricated by waves with mutually orthogonal polarization. The polarization holographic gratings can diffract laser wave and shift the polarization state of diffraction wave at the same time. With the unique capacity of recording and retrieving intensity, phase and polarization state simultaneously, the polarization holographic gratings are expected to be applied in high density optical storage. Then, theory of polarization holography is briefly investigated and some unique properties based on newly developed vector theory are discussed. Compared with conventional holography, the reconstruction of polarization holography is more complicated. The Jones matrix has been applied to polarization holography for a long time. However, the calculation of the Jones matrix is commonly limited in paraxial approximation, as the solution of it would become quite complex without the limitation. In 2011, Kuroda et al. proposed a new tensor theory that provides a simple solution of polarization holography under non-paraxial approximation. In this theory, the hologram was divided into intensity and polarization parts and expressed as a tensor product of the interference electric field. Therefore, the crossing angle can be arbitrary with any polarized waves. Henceforth, several theoretical and experimental research studies have been proposed based on this new tensor theory.

    At last, the further applications of polarization holography in high density data storage are briefly overviewed. Sever methods of polarization multiplexed holographic recording have been proposed with polarization holography. In dual-channel holographic recording with orthogonal linear polarization holography, two polarization encoded holograms were recorded in a dual-channel recording system with negligible inter-channel crosstalk. And the two polarization multiplexed holograms could then be sequentially or simultaneously realized by shifting the polarization state of reference wave. Further, vector hologram in which the vector beams are recorded and reconstructed has been realized by polarization holography.

    In conclusion, polarization holography is an attractive technique for its unique capacity of recording intensity, phase, and polarization of a wave simultaneously. With the help of polarization holography, holographic data storage can further improve its storage density by fully using of multi-parameter of light wave including intensity, phase and polarization states.

  • 加载中
  • 图 1  不同角度下偏振光干涉光场分布。

    Figure 1.  Polarized interference light field distribution at different angles.

    图 2  偏光全息的干涉记录过程

    Figure 2.  Recording process of polarization holography

    图 3  偏光全息的衍射再现过程

    Figure 3.  Diffraction process of polarization holography

    图 4  基于正交线偏振全息的双通道全息记录[50]

    Figure 4.  Dual-channel holographic recording with orthogonal linear polarization holography[50]

    图 5  偏光全息产生矢量光束实验结果。

    Figure 5.  Experimental results of vector beam generated by polarization holography.

    图 6  偏光全息实现偏振编码存储的原理示意图[55]

    Figure 6.  Schematic diagram of polarized code storage for polarization holography[55]

    表 1  线偏振偏光全息规律

    Table 1.  Polarization state of linear polarized holographic

    记录过程 再现过程
    信号光 参考光 参考光 衍射光
    s p s B·cosθ·p
    p Bs
    p s s Bp
    p B·cosθ·s
    下载: 导出CSV

    表 2  圆偏振偏光全息规律

    Table 2.  Polarization state of circular polarized holographic

    记录过程 再现过程
    信号光 参考光 参考光 衍射光(A+B=0)
    l r r [B-0.5(A-B)cosθ]l
    l 0
    r l r 0
    l [B-0.5(A-B)cosθ]r
    下载: 导出CSV
  • [1]

    Gabor D. A new microscopic principle[J]. Nature, 1948, 161(4098): 777-778. doi: 10.1038/161777a0

    [2]

    Leith E N, Upatnieks J. Reconstructed wavefronts and communication theory[J]. Journal of the Optical Society of America, 1962, 52(10): 1123-1130. doi: 10.1364/JOSA.52.001123

    [3]

    Denisyuk Y N. Photographic reconstruction of the optical properties of an object in its own scattered radiation field[J]. Soviet Physics Doklady, 1962, 7: 543-545. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC027560509

    [4]

    Van der Lugt A, Rotz F B, Klooster Jr A. Character-reading by optical spatial filtering[M]//Tippett I C. Optical and Electro-Optical Information Processing. Cambridge, Massachusetts: Massachusetts Institute of Technology Press, 1965: 125-135.

    [5]

    Benton S A. Hologram reconstructions with extended incoherent sources[J]. Journal of the Optical Society of America, 1969, 59(10): 1545A.

    [6]

    White J G, Amos W B. Confocal microscopy comes of age[J]. Nature, 1987, 328(6126): 183-184. doi: 10.1038/328183a0

    [7]

    Son J Y, Javidi B, Kwack K D. Methods for displaying three-dimensional images[J]. Proceedings of the IEEE, 2006, 94(3): 502-523. doi: 10.1109/JPROC.2006.870686

    [8]

    Ostrovsky Y I, Butusov M M, Ostrovskaya G V. Interferometry by Holography[M]. Berlin: Springer, 1980: 184-191.

    [9]

    虞祖良, 金国藩.计算机制全息图[M].北京:清华大学出版社, 1984: 12-30, 48-50.

    Yu Z L, Jin G F. Computer-generated Hologram[M]. Beijing: Tsinghua University Press, 1984: 12-30, 48-50.

    [10]

    Dhar L, Curtis K, F cke T. Holographic data storage: coming of age[J]. Nature Photonics, 2008, 2(7): 403-405. doi: 10.1038/nphoton.2008.120

    [11]

    Curtis K, Dhar L, Hill A, et al. Holographic Data Storage[M]. Hoboken, NJ: John Wiley & Sons Ltd, 2010: 1-14.

    [12]

    Coufal H J, Psaltis D, Sincerbox G T. Holographic Data Storage[M]. Berlin: Springer-Verlag, 2000: 1-17.

    [13]

    Heanue J F, Bashaw M C, Daiber A J, et al. Digital holographic storage system incorporating thermal fixing in lithium niobate[J]. Optics Letters, 1996, 21(19): 1615-1617. doi: 10.1364/OL.21.001615

    [14]

    Van Heerden P J. Theory of optical information storage in solids[J]. Applied Optics, 1963, 2(4): 393-400. doi: 10.1364/AO.2.000393

    [15]

    Heanue J F, Bashaw M C, Hesselink L. Volume holographic storage and retrieval of digital data[J]. Science, 1994, 265(5173): 749-752. doi: 10.1126/science.265.5173.749

    [16]

    陶世荃.高密度光学全息存储技术的新进展——向光盘存储挑战[J].物理, 1997, 26(2): 79-85. http://www.cnki.com.cn/Article/CJFDTotal-WLZZ702.003.htm

    Tao S Q. Recent advances in dense holographic storage[J]. Physics, 1997, 26(2): 79-85. http://www.cnki.com.cn/Article/CJFDTotal-WLZZ702.003.htm

    [17]

    谭小地.大数据时代的光存储技术[J].红外与激光工程, 2016, 45(9): 19-22. http://d.old.wanfangdata.com.cn/Periodical/hwyjggc201609003

    Tan X D. Optical data storage technologies for big data era[J]. Infrared and Laser Engineering, 2016, 45(9): 19-22. http://d.old.wanfangdata.com.cn/Periodical/hwyjggc201609003

    [18]

    Kdnuggets. IDC study: digital universe in 2020[EB/OL]. (2012-12-15).

    [19]

    Tan X D, Lin X, Wu A A, et al. High density collinear holographic data storage system[J]. Frontiers of Optoelectronics, 2014, 7(4): 443-449. doi: 10.1007/s12200-014-0399-1

    [20]

    Lohmann A W. Reconstruction of vectorial wavefronts[J]. Applied Optics, 1965, 4(12): 1667-1668. doi: 10.1364/AO.4.001667

    [21]

    Fourney M E, Waggoner A P, Mate K V. Recording polarization effects via holography[J]. Journal of the Optical Society of America, 1968, 58(5): 701-702. doi: 10.1364/JOSA.58.000701

    [22]

    Kakichashvili S D. Method for phase polarization recording of holograms[J]. Soviet Journal of Quantum Electronics, 1974, 4(6): 795-798. doi: 10.1070/QE1974v004n06ABEH009334

    [23]

    Nikolova L, Ramanujam P S. Polarization Holography[M]. Cambridge: Cambridge University Press, 2009: 25-85.

    [24]

    Kuroda K, Matsuhashi Y, Fujimura R, et al. Theory of polarization holography[J]. Optical Review, 2011, 18(5): 374. doi: 10.1007/s10043-011-0072-5

    [25]

    Zang J L, Wu A A, Liu Y, et al. Characteristics of volume polarization holography with linear polarization light[J]. Optical Review, 2015, 22(5): 829-831. doi: 10.1007/s10043-015-0122-5

    [26]

    Wu A A, Kang G G, Zang J L, et al. Null reconstruction of orthogonal circular polarization hologram with large recording angle[J]. Optics Express, 2015, 23(7): 8880-8887. doi: 10.1364/OE.23.008880

    [27]

    Zhang Y Y, Kang G G, Zang J L, et al. Inverse polarizing effect of an elliptical-polarization recorded hologram at a large cross angle[J]. Optics Letters, 2016, 41(17): 4126-4129. doi: 10.1364/OL.41.004126

    [28]

    Hong Y F, Kang G G, Zang J L, et al. Investigation of faithful reconstruction in nonparaxial approximation polarization holography[J]. Applied Optics, 2017, 56(36): 10024-10029. doi: 10.1364/AO.56.010024

    [29]

    洪一凡, 臧金亮, 刘颖, 等.偏光全息研究历程与展望[J].中国光学, 2017, 10(5): 588-602. http://d.old.wanfangdata.com.cn/Periodical/zggxyyygxwz201705007

    Hong Y F, Zang J L, Liu Y, et al. Review and prospect of polarization holography[J]. Chinese Optics, 2017, 10(5): 588-602. http://d.old.wanfangdata.com.cn/Periodical/zggxyyygxwz201705007

    [30]

    Pu S Z, Yang T S, Yao B L, et al. Photochromic diarylethene for polarization holographic optical recording[J]. Materials Letters, 2007, 61(3): 855-859. doi: 10.1016/j.matlet.2006.06.084

    [31]

    Fu S C, Liu Y C, Dong L, et al. Photo-dynamics of polarization holographic recording in spirooxazine-doped polymer films[J]. Materials Letters, 2005, 59(11): 1449-1452. doi: 10.1016/j.matlet.2005.01.001

    [32]

    Fu S C, Liu Y C, Lu Z F, et al. Photo-induced birefringence and polarization holography in polymer films containing spirooxazine compounds pre-irradiated by UV light[J]. Optics Communications, 2004, 242(1-3): 115-122. doi: 10.1016/j.optcom.2004.08.022

    [33]

    Pham V P, Manivannan G, Lessard R A, et al. Real-time dynamic polarization holographic recording on auto-erasable azo-dye doped PMMA storage media[J]. Optical Materials, 1995, 4(4): 467-475. doi: 10.1016/0925-3467(94)00122-7

    [34]

    Couture J J A. Polarization holographic characterization of organic azo dyes/PVA films for real time applications[J]. Applied Optics, 1991, 30(20): 2858-2866. doi: 10.1364/AO.30.002858

    [35]

    Kawatsuki N, Matsushita H, Kondo M, et al. Photoinduced reorientation and polarization holography in a new photopolymer with 4-methoxy-N-benzylideneaniline side groups[J]. APL Materials, 2013, 1(2): 022103. doi: 10.1063/1.4818003

    [36]

    Cipparrone G, Pagliusi P, Provenzano C, et al. Polarization holographic recording in amorphous polymer with photoinduced linear and circular birefringence[J]. Journal of Physical Chemistry B, 2010, 114(27): 8900-8904. doi: 10.1021/jp103899b

    [37]

    Mao W D, Sun Q H, Baig S, et al. Red light holographic recording and readout on an azobenzene-LC polymer hybrid composite system[J]. Optics Communications, 2015, 355: 256-260. doi: 10.1016/j.optcom.2015.06.034

    [38]

    Zhao F L, Wang C S, Qin M, et al. Polarization holographic gratings in an azobenzene copolymer with linear and circular photoinduced birefringence[J]. Optics Communications, 2015, 338: 461-466. doi: 10.1016/j.optcom.2014.11.019

    [39]

    Gallego S, Ortuño M F, Neipp C, et al. Improved maximum uniformity and capacity of multiple holograms recorded in absorbent photopolymers[J]. Optics Express, 2007, 15(15): 9308-9319. doi: 10.1364/OE.15.009308

    [40]

    Gleeson M R, Sabol D, Liu S, et al. Improvement of the spatial frequency response of photopolymer materials by modifying polymer chain length[J]. Journal of the Optical Society of America B, 2008, 25(3): 396-406. doi: 10.1364/JOSAB.25.000396

    [41]

    Liu S, Gleeson M R, Sheridan J T. Analysis of the photoabsorptive behavior of two different photosensitizers in a photopolymer material[J]. Journal of the Optical Society of America B, 2009, 26(3): 528-536. doi: 10.1364/JOSAB.26.000528

    [42]

    Garcıa C, Fimia A, Pascual I. Holographic behavior of a photopolymer at high thicknesses and high monomer concentrations: mechanism of photopolymerization[J]. Applied Physics B, 2001, 72(3): 311-316. http://link.springer.com/article/10.1007/s003400000469

    [43]

    Gallego S, Ortuño M, Neipp C, et al. 3 dimensional analysis of holographic photopolymers based memories[J]. Optics Express, 2005, 13(9): 3543-3557. doi: 10.1364/OPEX.13.003543

    [44]

    Gallego S, Ortuño M, Neipp C, et al. 3-dimensional characterization of thick grating formation in PVA/AA based photopolymer[J]. Optics Express, 2006, 14(12): 5121-5128. doi: 10.1364/OE.14.005121

    [45]

    Nikolova L, Markovsky P, Tomova N, et al. Optically-controlled photo-induced birefringence in photo-anisotropic materials[J]. Journal of Modern Optics, 1988, 35(11): 1789-1799. doi: 10.1080/09500348814551961

    [46]

    Todorov T, Nikolova L, Tomova N, et al. Photoinduced anisotropy in rigid dye solutions for transient polarization holography[J]. IEEE Journal of Quantum Electronics, 1986, 22(8): 1262-1267. doi: 10.1109/JQE.1986.1073138

    [47]

    Barada D, Ochiai T, Fukuda T, et al. Dual-channel polarization holography: a technique for recording two complex amplitude components of a vector wave[J]. Optics Letters, 2012, 37(21): 4528-4530. doi: 10.1364/OL.37.004528

    [48]

    Ochiai T, Barada D, Fukuda T, et al. Angular multiplex recording of data pages by dual-channel polarization holography[J]. Optics Letters, 2013, 38(5): 748-750. doi: 10.1364/OL.38.000748

    [49]

    Lin S H, Cho S L, Chou S F, et al. Volume polarization holographic recording in thick photopolymer for optical memory[J]. Optics express, 2014, 22(12): 14944-14957. doi: 10.1364/OE.22.014944

    [50]

    Zang J L, Kang G G, Li P, et al. Dual-channel recording based on the null reconstruction effect of orthogonal linear polarization holography[J]. Optics Letters, 2017, 42(7): 1377-1380. doi: 10.1364/OL.42.001377

    [51]

    Ono H, Wakabayashi H, Sasaki T, et al. Vector holograms using radially polarized light[J]. Applied Physics Letters, 2009, 94(7): 71114. doi: 10.1063/1.3089236

    [52]

    Ruiz U, Pagliusi P, Provenzano C, et al. Highly efficient generation of vector beams through polarization holograms[J]. Applied Physics Letters, 2013, 102(16): 161104. doi: 10.1063/1.4801317

    [53]

    Matharu A S, Jeeva S, Ramanujam P S. Liquid crystals for holographic optical data storage[J]. Chemical Society Reviews, 2007, 36(12): 1868. doi: 10.1039/b706242g

  • 加载中

(6)

(2)

计量
  • 文章访问数:  9259
  • PDF下载数:  3170
  • 施引文献:  0
出版历程
收稿日期:  2018-11-20
修回日期:  2019-01-25
刊出日期:  2019-03-01

目录

/

返回文章
返回