Wei Ran, Zang Jinliang, Liu Ying, et al. Review on polarization holography for high density storage[J]. Opto-Electronic Engineering, 2019, 46(3): 180598. doi: 10.12086/oee.2019.180598
Citation: Wei Ran, Zang Jinliang, Liu Ying, et al. Review on polarization holography for high density storage[J]. Opto-Electronic Engineering, 2019, 46(3): 180598. doi: 10.12086/oee.2019.180598

Review on polarization holography for high density storage

    Fund Project: Supported by National Natural Science Foundation of China (NSFC) (61475079, 61675020) and China Postdoctoral Science Foundation (2017M620635)
More Information
  • By recording the polarization grating formed by the interference of two polarized lights, polarization holography can store the information in polarization sensitive materials. In contrast to traditional holography, polarization holography owns many unique properties, for instance, utilizing the long-neglected polarization information and increasing storage capacity. This paper first briefly introduced the development of polarization holography, the tensor-based holographic theory and some of its inferences. Then the further applications of polarization holography in high density data storage are briefly overviewed.
  • 加载中
  • [1] Gabor D. A new microscopic principle[J]. Nature, 1948, 161(4098): 777-778. doi: 10.1038/161777a0

    CrossRef Google Scholar

    [2] Leith E N, Upatnieks J. Reconstructed wavefronts and communication theory[J]. Journal of the Optical Society of America, 1962, 52(10): 1123-1130. doi: 10.1364/JOSA.52.001123

    CrossRef Google Scholar

    [3] Denisyuk Y N. Photographic reconstruction of the optical properties of an object in its own scattered radiation field[J]. Soviet Physics Doklady, 1962, 7: 543-545.

    Google Scholar

    [4] Van der Lugt A, Rotz F B, Klooster Jr A. Character-reading by optical spatial filtering[M]//Tippett I C. Optical and Electro-Optical Information Processing. Cambridge, Massachusetts: Massachusetts Institute of Technology Press, 1965: 125-135.

    Google Scholar

    [5] Benton S A. Hologram reconstructions with extended incoherent sources[J]. Journal of the Optical Society of America, 1969, 59(10): 1545A.

    Google Scholar

    [6] White J G, Amos W B. Confocal microscopy comes of age[J]. Nature, 1987, 328(6126): 183-184. doi: 10.1038/328183a0

    CrossRef Google Scholar

    [7] Son J Y, Javidi B, Kwack K D. Methods for displaying three-dimensional images[J]. Proceedings of the IEEE, 2006, 94(3): 502-523. doi: 10.1109/JPROC.2006.870686

    CrossRef Google Scholar

    [8] Ostrovsky Y I, Butusov M M, Ostrovskaya G V. Interferometry by Holography[M]. Berlin: Springer, 1980: 184-191.

    Google Scholar

    [9] 虞祖良, 金国藩.计算机制全息图[M].北京:清华大学出版社, 1984: 12-30, 48-50.

    Google Scholar

    Yu Z L, Jin G F. Computer-generated Hologram[M]. Beijing: Tsinghua University Press, 1984: 12-30, 48-50.

    Google Scholar

    [10] Dhar L, Curtis K, F cke T. Holographic data storage: coming of age[J]. Nature Photonics, 2008, 2(7): 403-405. doi: 10.1038/nphoton.2008.120

    CrossRef Google Scholar

    [11] Curtis K, Dhar L, Hill A, et al. Holographic Data Storage[M]. Hoboken, NJ: John Wiley & Sons Ltd, 2010: 1-14.

    Google Scholar

    [12] Coufal H J, Psaltis D, Sincerbox G T. Holographic Data Storage[M]. Berlin: Springer-Verlag, 2000: 1-17.

    Google Scholar

    [13] Heanue J F, Bashaw M C, Daiber A J, et al. Digital holographic storage system incorporating thermal fixing in lithium niobate[J]. Optics Letters, 1996, 21(19): 1615-1617. doi: 10.1364/OL.21.001615

    CrossRef Google Scholar

    [14] Van Heerden P J. Theory of optical information storage in solids[J]. Applied Optics, 1963, 2(4): 393-400. doi: 10.1364/AO.2.000393

    CrossRef Google Scholar

    [15] Heanue J F, Bashaw M C, Hesselink L. Volume holographic storage and retrieval of digital data[J]. Science, 1994, 265(5173): 749-752. doi: 10.1126/science.265.5173.749

    CrossRef Google Scholar

    [16] 陶世荃.高密度光学全息存储技术的新进展——向光盘存储挑战[J].物理, 1997, 26(2): 79-85.

    Google Scholar

    Tao S Q. Recent advances in dense holographic storage[J]. Physics, 1997, 26(2): 79-85.

    Google Scholar

    [17] 谭小地.大数据时代的光存储技术[J].红外与激光工程, 2016, 45(9): 19-22.

    Google Scholar

    Tan X D. Optical data storage technologies for big data era[J]. Infrared and Laser Engineering, 2016, 45(9): 19-22.

    Google Scholar

    [18] Kdnuggets. IDC study: digital universe in 2020[EB/OL]. (2012-12-15).

    Google Scholar

    [19] Tan X D, Lin X, Wu A A, et al. High density collinear holographic data storage system[J]. Frontiers of Optoelectronics, 2014, 7(4): 443-449. doi: 10.1007/s12200-014-0399-1

    CrossRef Google Scholar

    [20] Lohmann A W. Reconstruction of vectorial wavefronts[J]. Applied Optics, 1965, 4(12): 1667-1668. doi: 10.1364/AO.4.001667

    CrossRef Google Scholar

    [21] Fourney M E, Waggoner A P, Mate K V. Recording polarization effects via holography[J]. Journal of the Optical Society of America, 1968, 58(5): 701-702. doi: 10.1364/JOSA.58.000701

    CrossRef Google Scholar

    [22] Kakichashvili S D. Method for phase polarization recording of holograms[J]. Soviet Journal of Quantum Electronics, 1974, 4(6): 795-798. doi: 10.1070/QE1974v004n06ABEH009334

    CrossRef Google Scholar

    [23] Nikolova L, Ramanujam P S. Polarization Holography[M]. Cambridge: Cambridge University Press, 2009: 25-85.

    Google Scholar

    [24] Kuroda K, Matsuhashi Y, Fujimura R, et al. Theory of polarization holography[J]. Optical Review, 2011, 18(5): 374. doi: 10.1007/s10043-011-0072-5

    CrossRef Google Scholar

    [25] Zang J L, Wu A A, Liu Y, et al. Characteristics of volume polarization holography with linear polarization light[J]. Optical Review, 2015, 22(5): 829-831. doi: 10.1007/s10043-015-0122-5

    CrossRef Google Scholar

    [26] Wu A A, Kang G G, Zang J L, et al. Null reconstruction of orthogonal circular polarization hologram with large recording angle[J]. Optics Express, 2015, 23(7): 8880-8887. doi: 10.1364/OE.23.008880

    CrossRef Google Scholar

    [27] Zhang Y Y, Kang G G, Zang J L, et al. Inverse polarizing effect of an elliptical-polarization recorded hologram at a large cross angle[J]. Optics Letters, 2016, 41(17): 4126-4129. doi: 10.1364/OL.41.004126

    CrossRef Google Scholar

    [28] Hong Y F, Kang G G, Zang J L, et al. Investigation of faithful reconstruction in nonparaxial approximation polarization holography[J]. Applied Optics, 2017, 56(36): 10024-10029. doi: 10.1364/AO.56.010024

    CrossRef Google Scholar

    [29] 洪一凡, 臧金亮, 刘颖, 等.偏光全息研究历程与展望[J].中国光学, 2017, 10(5): 588-602.

    Google Scholar

    Hong Y F, Zang J L, Liu Y, et al. Review and prospect of polarization holography[J]. Chinese Optics, 2017, 10(5): 588-602.

    Google Scholar

    [30] Pu S Z, Yang T S, Yao B L, et al. Photochromic diarylethene for polarization holographic optical recording[J]. Materials Letters, 2007, 61(3): 855-859. doi: 10.1016/j.matlet.2006.06.084

    CrossRef Google Scholar

    [31] Fu S C, Liu Y C, Dong L, et al. Photo-dynamics of polarization holographic recording in spirooxazine-doped polymer films[J]. Materials Letters, 2005, 59(11): 1449-1452. doi: 10.1016/j.matlet.2005.01.001

    CrossRef Google Scholar

    [32] Fu S C, Liu Y C, Lu Z F, et al. Photo-induced birefringence and polarization holography in polymer films containing spirooxazine compounds pre-irradiated by UV light[J]. Optics Communications, 2004, 242(1-3): 115-122. doi: 10.1016/j.optcom.2004.08.022

    CrossRef Google Scholar

    [33] Pham V P, Manivannan G, Lessard R A, et al. Real-time dynamic polarization holographic recording on auto-erasable azo-dye doped PMMA storage media[J]. Optical Materials, 1995, 4(4): 467-475. doi: 10.1016/0925-3467(94)00122-7

    CrossRef Google Scholar

    [34] Couture J J A. Polarization holographic characterization of organic azo dyes/PVA films for real time applications[J]. Applied Optics, 1991, 30(20): 2858-2866. doi: 10.1364/AO.30.002858

    CrossRef Google Scholar

    [35] Kawatsuki N, Matsushita H, Kondo M, et al. Photoinduced reorientation and polarization holography in a new photopolymer with 4-methoxy-N-benzylideneaniline side groups[J]. APL Materials, 2013, 1(2): 022103. doi: 10.1063/1.4818003

    CrossRef Google Scholar

    [36] Cipparrone G, Pagliusi P, Provenzano C, et al. Polarization holographic recording in amorphous polymer with photoinduced linear and circular birefringence[J]. Journal of Physical Chemistry B, 2010, 114(27): 8900-8904. doi: 10.1021/jp103899b

    CrossRef Google Scholar

    [37] Mao W D, Sun Q H, Baig S, et al. Red light holographic recording and readout on an azobenzene-LC polymer hybrid composite system[J]. Optics Communications, 2015, 355: 256-260. doi: 10.1016/j.optcom.2015.06.034

    CrossRef Google Scholar

    [38] Zhao F L, Wang C S, Qin M, et al. Polarization holographic gratings in an azobenzene copolymer with linear and circular photoinduced birefringence[J]. Optics Communications, 2015, 338: 461-466. doi: 10.1016/j.optcom.2014.11.019

    CrossRef Google Scholar

    [39] Gallego S, Ortuño M F, Neipp C, et al. Improved maximum uniformity and capacity of multiple holograms recorded in absorbent photopolymers[J]. Optics Express, 2007, 15(15): 9308-9319. doi: 10.1364/OE.15.009308

    CrossRef Google Scholar

    [40] Gleeson M R, Sabol D, Liu S, et al. Improvement of the spatial frequency response of photopolymer materials by modifying polymer chain length[J]. Journal of the Optical Society of America B, 2008, 25(3): 396-406. doi: 10.1364/JOSAB.25.000396

    CrossRef Google Scholar

    [41] Liu S, Gleeson M R, Sheridan J T. Analysis of the photoabsorptive behavior of two different photosensitizers in a photopolymer material[J]. Journal of the Optical Society of America B, 2009, 26(3): 528-536. doi: 10.1364/JOSAB.26.000528

    CrossRef Google Scholar

    [42] Garcıa C, Fimia A, Pascual I. Holographic behavior of a photopolymer at high thicknesses and high monomer concentrations: mechanism of photopolymerization[J]. Applied Physics B, 2001, 72(3): 311-316.

    Google Scholar

    [43] Gallego S, Ortuño M, Neipp C, et al. 3 dimensional analysis of holographic photopolymers based memories[J]. Optics Express, 2005, 13(9): 3543-3557. doi: 10.1364/OPEX.13.003543

    CrossRef Google Scholar

    [44] Gallego S, Ortuño M, Neipp C, et al. 3-dimensional characterization of thick grating formation in PVA/AA based photopolymer[J]. Optics Express, 2006, 14(12): 5121-5128. doi: 10.1364/OE.14.005121

    CrossRef Google Scholar

    [45] Nikolova L, Markovsky P, Tomova N, et al. Optically-controlled photo-induced birefringence in photo-anisotropic materials[J]. Journal of Modern Optics, 1988, 35(11): 1789-1799. doi: 10.1080/09500348814551961

    CrossRef Google Scholar

    [46] Todorov T, Nikolova L, Tomova N, et al. Photoinduced anisotropy in rigid dye solutions for transient polarization holography[J]. IEEE Journal of Quantum Electronics, 1986, 22(8): 1262-1267. doi: 10.1109/JQE.1986.1073138

    CrossRef Google Scholar

    [47] Barada D, Ochiai T, Fukuda T, et al. Dual-channel polarization holography: a technique for recording two complex amplitude components of a vector wave[J]. Optics Letters, 2012, 37(21): 4528-4530. doi: 10.1364/OL.37.004528

    CrossRef Google Scholar

    [48] Ochiai T, Barada D, Fukuda T, et al. Angular multiplex recording of data pages by dual-channel polarization holography[J]. Optics Letters, 2013, 38(5): 748-750. doi: 10.1364/OL.38.000748

    CrossRef Google Scholar

    [49] Lin S H, Cho S L, Chou S F, et al. Volume polarization holographic recording in thick photopolymer for optical memory[J]. Optics express, 2014, 22(12): 14944-14957. doi: 10.1364/OE.22.014944

    CrossRef Google Scholar

    [50] Zang J L, Kang G G, Li P, et al. Dual-channel recording based on the null reconstruction effect of orthogonal linear polarization holography[J]. Optics Letters, 2017, 42(7): 1377-1380. doi: 10.1364/OL.42.001377

    CrossRef Google Scholar

    [51] Ono H, Wakabayashi H, Sasaki T, et al. Vector holograms using radially polarized light[J]. Applied Physics Letters, 2009, 94(7): 71114. doi: 10.1063/1.3089236

    CrossRef Google Scholar

    [52] Ruiz U, Pagliusi P, Provenzano C, et al. Highly efficient generation of vector beams through polarization holograms[J]. Applied Physics Letters, 2013, 102(16): 161104. doi: 10.1063/1.4801317

    CrossRef Google Scholar

    [53] Matharu A S, Jeeva S, Ramanujam P S. Liquid crystals for holographic optical data storage[J]. Chemical Society Reviews, 2007, 36(12): 1868. doi: 10.1039/b706242g

    CrossRef Google Scholar

  • Overview: Optical data storage is suitable and economical for a data center and an archive storage system with the advantages of long lifetime for storing digital data. However, traditional optical data storage methods including CDs, DVDs, and Blu-ray Discs face technical obstacles in obtaining further large-capacity optical data storage. Holographic optical data storage is a potential technology in the next generation of optical storage due to its high capacity for data storage and its high speed of data transmission.

    In this paper, the concept of polarization holography is firstly introduced. In contrast to conventional holography which record the intensity gratings formed by two waves with same polarization, polarization holography records polarization gratings fabricated by waves with mutually orthogonal polarization. The polarization holographic gratings can diffract laser wave and shift the polarization state of diffraction wave at the same time. With the unique capacity of recording and retrieving intensity, phase and polarization state simultaneously, the polarization holographic gratings are expected to be applied in high density optical storage. Then, theory of polarization holography is briefly investigated and some unique properties based on newly developed vector theory are discussed. Compared with conventional holography, the reconstruction of polarization holography is more complicated. The Jones matrix has been applied to polarization holography for a long time. However, the calculation of the Jones matrix is commonly limited in paraxial approximation, as the solution of it would become quite complex without the limitation. In 2011, Kuroda et al. proposed a new tensor theory that provides a simple solution of polarization holography under non-paraxial approximation. In this theory, the hologram was divided into intensity and polarization parts and expressed as a tensor product of the interference electric field. Therefore, the crossing angle can be arbitrary with any polarized waves. Henceforth, several theoretical and experimental research studies have been proposed based on this new tensor theory.

    At last, the further applications of polarization holography in high density data storage are briefly overviewed. Sever methods of polarization multiplexed holographic recording have been proposed with polarization holography. In dual-channel holographic recording with orthogonal linear polarization holography, two polarization encoded holograms were recorded in a dual-channel recording system with negligible inter-channel crosstalk. And the two polarization multiplexed holograms could then be sequentially or simultaneously realized by shifting the polarization state of reference wave. Further, vector hologram in which the vector beams are recorded and reconstructed has been realized by polarization holography.

    In conclusion, polarization holography is an attractive technique for its unique capacity of recording intensity, phase, and polarization of a wave simultaneously. With the help of polarization holography, holographic data storage can further improve its storage density by fully using of multi-parameter of light wave including intensity, phase and polarization states.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(2)

Article Metrics

Article views(9642) PDF downloads(3200) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint