The development of optical holographic data storage technology in the past 50 years is reviewed in this paper. With the continuous development of key devices and materials, optical holographic data storage technology is becoming more and more mature. At present, in the era of Big Data, the demands for data storage density and data transfer rate are greater than ever before. Optical holographic data storage has become a potential candidate for the next generation of data storage technology because of its advantages of superhigh storage capacity, superfast data transfer rate, and superlong storage life. The coaxial holographic storage system will become the cornerstone of further practicality of holographic storage technology because of its compact structure, simple operation and strong compatibility. Meanwhile, new phase modulated holographic data storage system is becoming the research hotspot. The new round of rapid development has arrived.
Home > Journal Home > Opto-Electronic Engineering
Opto-Electronic Engineering
ISSN: 1003-501X
CN: 51-1346/O4
Monthly, included in CA, Scopus, CSCD
CN: 51-1346/O4
Monthly, included in CA, Scopus, CSCD
Optical holographic data storage—The time for new development
Author Affiliations

First published at:Mar 01, 2019
Abstract
Overview
References
1 Gabor D. A new microscopic principle[J]. Nature, 1948, 161(4098): 777-779. DOI:10.1038/161777a0
2 Gabor D. Microscopy by reconstructed wave-fronts[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1949, 197(1051): 454-487.
3 Gabor D. Microscopy by reconstructed wave fronts: Ⅱ[J]. Proceedings of the Physical Society: Section B, 1951, 64(6): 449-469. DOI:10.1088/0370-1301/64/6/301
4 Kirkpatrick P, El-Sum H M A. Image formation by reconstructed wave fronts. Ⅰ. Physical principles and methods of refinement[J]. Journal of the Optical Society of America, 1956, 46(10): 825-830. DOI:10.1364/JOSA.46.000825
5 El-Sum H M A. Reconstructed wave-front microscopy[D]. Stanford: Stanford University, 1953.
6 Baez A V. Resolving power in diffraction microscopy with special reference to X-rays[J]. Nature, 1952, 169(4310): 963-964.
7 Rogers G L. Gabor diffraction microscopy: the hologram as a generalized zone-plate[J]. Nature, 1950, 166(4214): 237.
8 Leith E N, Upatnieks J. Reconstructed wavefronts and communication theory[J]. Journal of the Optical Society of America, 1962, 52(10): 1123-1130. DOI:10.1364/JOSA.52.001123
9 Leith E N, Upatnieks J. Wavefront reconstruction with diffused illumination and three-dimensional objects[J]. Journal of the Optical Society of America, 1964, 54(11): 1295-1301. DOI:10.1364/JOSA.54.001295
10 Van Heerden P J. Theory of optical information storage in solids[J]. Applied Optics, 1963, 2(4): 393-400. DOI:10.1364/AO.2.000393
11 Leith E N, Kozma A, Upatnieks J, et al. Holographic data storage in three-dimensional media[J]. Applied Optics, 1966, 5(8): 1303-1311. DOI:10.1364/AO.5.001303
12 Ashkin A, Boyd G D, Dziedzic J M, et al. Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3[J]. Applied Physics Letters, 1966, 9(1): 72-74. DOI:10.1063/1.1754607
13 Staebler D L, Amodei J J. Coupled-wave analysis of holographic storage in LiNbO3[J]. Journal of Applied Physics, 1972, 43(3): 1042-1049. DOI:10.1063/1.1661215
14 Staebler D L, Burke W J, Phillips W, et al. Multiple storage and erasure of fixed holograms in Fe-doped LiNbO3[J]. Applied Physics Letters, 1975, 26(4): 182-184. DOI:10.1063/1.88108
15 Ishida A, Mikami O, Miyazawa S, et al. Rh-doped LiNbO3 as an improved new material for reversible holographic storage[J]. Applied Physics Letters, 1972, 21(5): 192-193. DOI:10.1063/1.1654339
16 Shah P, Rabson T A, Tittel F K, et al. Volume holographic recording and storage in Fe-doped LiNbO3 using optical pulses[J]. Applied Physics Letters, 1974, 24(3): 130-131. DOI:10.1063/1.1655122
17 Stewart W C, Mezrich R S, Cosentino L S, et al. An experimental read-write holographic memory[J]. RCA Review, 1973, 34: 3-44.
18 Nishida N, Sakaguchi M, Saito F. Holographic coding plate: a new application of holographic memory[J]. Applied Optics, 1973, 12(7): 1663-1674. DOI:10.1364/AO.12.001663
19 D'Auria L, Huignard J, Spitz E. Holographic read-write memory and capacity enhancement by 3-D storage[J]. IEEE Transactions on Magnetics, 1973, 9(2): 83-94. DOI:10.1109/TMAG.1973.1067578
20 D'Auria L, Huignard J P, Slezak V C, et al. Experimental holographic read-write memory using 3-D storage[J]. Applied Optics, 1974, 13(4): 808-818. DOI:10.1364/AO.13.000808
21 Amodei J J, Staebler D L. Holographic pattern fixing in electro-optic crystals[J]. Applied Physics Letters, 1971, 18(12): 540-542. DOI:10.1063/1.1653530
22 Mikaeliane A L. Holographic bulk memories using lithium niobate crystals for data recording[M]//Barrekette E S, Stroke G W, Nesterikhin Y E, et al. Optical Information Processing. Boston, MA: Springer, 1978: 217-233.
23 Tsunoda Y, Tatsuno K, Kataoka K, et al. Holographic video disk: an alternative approach to optical video disks[J]. Applied Optics, 1976, 15(6): 1398-1403. DOI:10.1364/AO.15.001398
24 Kubota K, Ono Y, Kondo M, et al. Holographic disk with high data transfer rate: its application to an audio response memory[J]. Applied Optics, 1980, 19(6): 944-951. DOI:10.1364/AO.19.000944
25 Mok F H, Tackitt M C, Stoll H M. Storage of 500 high-resolution holograms in a LiNbO3 crystal[J]. Optics Letters, 1991, 16(8): 605-607. DOI:10.1364/OL.16.000605
26 Mok F H. Angle-multiplexed storage of 5000 holograms in lithium niobate[J]. Optics Letters, 1993, 18(11): 915-917. DOI:10.1364/OL.18.000915
27 Heanue J F, Bashaw M C, Hesselink L. Volume holographic storage and retrieval of digital data[J]. Science, 1994, 265(5173): 749-752. DOI:10.1126/science.265.5173.749
28 Bernal M P, Coufal H, Grygier R K, et al. A precision tester for studies of holographic optical storage materials and recording physics[J]. Applied Optics, 1996, 35(14): 2360-2374. DOI:10.1364/AO.35.002360
29 Shelby R M, Hoffnagle J A, Burr G W, et al. Pixel-matched holographic data storage with megabit pages[J]. Optics Letters, 1997, 22(19): 1509-1511. DOI:10.1364/OL.22.001509
30 Hong J H, McMichael I C, Chang T Y, et al. Volume holographic memory systems: techniques and architectures[J]. Optical Engineering, 1995, 34(8): 2193-2203. DOI:10.1117/12.213214
31 Curtis K. Digital holographic data storage prototype[C]//Proceedings of 2000Optical Data Storage.Conference Digest, Whisler, BC, Canada, 2000: 164-166.
32 Pu A, Psaltis D. Holographic data storage with 100 bits/μm2 density[C]//Proceedings of 1997 Optical Data Storage Topical Meeting ODS Conference Digest, Tucson, AZ, USA, 1997: 48-49.
33 Dhar L, Curtis K, Tackitt M, et al. Holographic storage of multiple high-capacity digital data pages in thick photopolymer systems[J]. Optics Letters, 1998, 23(21): 1710-1722. DOI:10.1364/OL.23.001710
34 Thaxter J B, Kestigian M. Unique properties of SBN and their use in a layered optical memory[J]. AppliedOptics, 1974, 13(4): 913-924. DOI:10.1364/AO.13.000913
35 Zhou H J, Morozov V, Neff J. Characterization of dupont photopolymers in infrared light for free-space optical interconnects[J]. AppliedOptics, 1995, 34(32): 7457-7459. DOI:10.1364/AO.34.007457
36 Pu A, Psaltis D. High-density recording in photopolymer-based holographic three-dimensional disks[J]. AppliedOptics, 1996, 35(14): 2389-2398. DOI:10.1364/AO.35.002389
37 Bieringer T. Photoaddressable polymers[M]//Coufal H J, Psaltis D, Sincerbox G T. Holographic Data Storage. Berlin, Heidelberg: Springer, 2000: 209-228.
38 Orlov S S, Bjornson E, Phillips W, et al. High transfer rate (1 Gbit/sec) high-capacity holographic disk digital data storage system[C]//Proceedings of 2000 Conference on Lasers and Electro-Optics, San Francisco, CA, USA, 2000: 190-191.
39 Waldman D A, Li H Y S, Horner M G. Volume shrinkage in slant fringe gratings of a cationic ring-opening holographic recording material[J]. Journal of Imaging Science and Technology, 1997, 41(5): 497-514.
40 Waldman D A, Butler C J, Raguin D H. CROP holographic storage media for optical data storage greater than 100 bits/μm2[J]. Proceedings of SPIE, 2003, 5216, doi: 10.1117/12.513614. DOI:10.1117/12.513614
41 Suzuki N, Tomita Y, Kojima T. Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer films[J]. Applied Physics Letters, 2002, 81(22): 4121-4123. DOI:10.1063/1.1525391
42 Goldenberg L M, Sakhno O V, Smirnova T N, et al. Holographic composites with gold nanoparticles: nanoparticles promote polymer segregation[J]. Chemistry of Materials, 2008, 20(14): 4619-4627. DOI:10.1021/cm8005315
43 Omura K, Tomita Y. Photopolymerization kinetics and volume holographic recording in ZrO2 nanoparticle-polymer composites at 404 nm[J]. Journal of Applied Physics, 2010, 107(2): 023107. DOI:10.1063/1.3289729
44 Hata E, Mitsube K, Momose K, et al. Holographic nanoparticle-polymer composites based on step-growth thiol-ene photopolymerization[J]. Optical Materials Express, 2011, 1(2): 207-222. DOI:10.1364/OME.1.000207
45 Li C M Y, Cao L C, He Q S, et al. Holographic kinetics for mixed volume gratings in gold nanoparticles doped photopolymer[J]. Optics Express, 2014, 22(5): 5017-5028. DOI:10.1364/OE.22.005017
46 Li C M Y, Cao L C, Wang Z, et al. Hybrid polarization-angle multiplexing for volume holography in gold nanoparticle-doped photopolymer[J]. Optics Letters, 2014, 39(24): 6891-6894. DOI:10.1364/OL.39.006891
47 Tomita Y, Urano H, Fukamizu T A, et al. Nanoparticle-polymer composite volume holographic gratings dispersed with ultrahigh-refractive-index hyperbranched polymer as organic nanoparticles[J]. Optics Letters, 2016, 41(6): 1281-1284. DOI:10.1364/OL.41.001281
48 Liu P, Zhao Y, Li Z R, et al. Improvement of ultrafast holographic performance in silver nanoprisms dispersed photopolymer[J]. Optics Express, 2018, 26(6): 6993-7004. DOI:10.1364/OE.26.006993
50 Ortuño M, Fernández E, Fuentes R, et al. Improving the performance of PVA/AA photopolymers for holographic recording[J]. Optical Materials, 2013, 35(3): 668-673. DOI:10.1016/j.optmat.2012.11.001
52 Fan F L, Liu Y, Hong Y F, et al. Improving the polarization-holography performance of PQ/PMMA photopolymer by doping with THMFA[J]. Optics Express, 2018, 26(14): 17794-17803. DOI:10.1364/OE.26.017794
53 Liu P, Wang L L, Zhao Y, et al. Holographic memory performances of titanocene dispersed poly (methyl methacrylate) photopolymer with different preparation conditions[J]. Optical Materials Express, 2018, 8(6): 1441-1453. DOI:10.1364/OME.8.001441
54 Mok F H, Psaltis D, Burr G W. Spatially and angle-multiplexed holographic random access memory[J]. Proceedings of SPIE, 1993, 1773: 334-345. DOI:10.1117/12.141544
55 Orlov S S, Phillips W, Bjornson E, et al. High data rate (10 Gbit/sec) demonstration in holographic disk digital data storage system[C]//Proceedings of the Summaries of Papers Presented at the Lasers and Electro-Optics. CLEO '02. Technical Diges, Long Beach, CA, USA, 2002: 70-71.
56 Rakuljic G A, Leyva V, Yariv A. Optical data storage by using orthogonal wavelength-multiplexed volume holograms[J]. Optics Letters, 1992, 17(20): 1471-1473. DOI:10.1364/OL.17.001471
57 Denz C, Pauliat G, Roosen G, et al. Volume hologram multiplexing using a deterministic phase encoding method[J]. Optics Communications, 1991, 85(2-3): 171-176. DOI:10.1016/0030-4018(91)90389-U
58 John R, Joseph J, Singh K. Holographic digital data storage using phase-modulated pixels[J]. Optics and Lasers in Engineering, 2005, 43(2): 183-194. DOI:10.1016/j.optlaseng.2004.06.008
59 Psaltis D, Levene M, Pu A, et al. Holographic storage using shift multiplexing[J]. Optics Letters, 1995, 20(7): 782-784. DOI:10.1364/OL.20.000782
60 Steckman G J, Pu A, Psaltis D. Storage density of shift-multiplexed holographic memory[J]. Applied Optics, 2001, 40(20): 3387-3394. DOI:10.1364/AO.40.003387
61 Pu A, Psaltis D. Holographic 3-D disks using shift multiplexing[C]//Summaries of papers presented at the Conference on Lasers and Electro-Optics, Anaheim, CA, USA, 1996: 165.
62 Darsky A M, Markov V B. Angular sensitivity of holograms with a reference speckle wave[J]. Proceedings of SPIE, 1991, 1238: 54-62. DOI:10.1117/12.19425
63 Barbastathis G, Levene M, Psaltis D. Shift multiplexing with spherical reference waves[J]. Applied Optics, 1996, 35(14): 2403-2417. DOI:10.1364/AO.35.002403
64 Markov V, Millerd J, Trolinger J, et al. Multilayer volume holographic optical memory[J]. Optics Letters, 1999, 24(4): 265-267. DOI:10.1364/OL.24.000265
65 Orlov S S, Phillips W, Bjornson E, et al. High-transfer-rate high-capacity holographic disk data-storage system[J]. Applied Optics, 2004, 43(25): 4902-4914. DOI:10.1364/AO.43.004902
66 Horimai H, Tan X D. Collinear technology for a holographic versatile disk[J]. Applied Optics, 2006, 45(5): 910-914. DOI:10.1364/AO.45.000910
67 Horimai H, Tan X D, Li J. Collinear holography[J]. Applied Optics, 2005, 44(13): 2575-2579. DOI:10.1364/AO.44.002575
68 Horimai H, Tan X D. Advanced collinear holography[J]. Optical Review, 2005, 12(2): 90-92. DOI:10.1007/s10043-004-0090-7
69 Horimai H, Tan X D. Holographic information storage system: today and future[J]. IEEE Transactions on Magnetics, 2007, 43(2): 943-947. DOI:10.1109/TMAG.2006.888528
70 Shih H F. Integrated optical unit design for the collinear holographic storage system[J]. IEEE Transactions on Magnetics, 2007, 43(2): 948-950. DOI:10.1109/TMAG.2006.888530
71 Wilson W L, Curtis K R, Anderson K E, et al. Realization of high-performance holographic data storage: the InPhase technologies demonstration platform[J]. Proceedings of SPIE, 2003, 5216: 178-191. DOI:10.1117/12.506055
72 Dhar L, Curtis K, Fäcke T. Holographic data storage: coming of age[J]. Nature Photonics, 2008, 2(7): 403-405. DOI:10.1038/nphoton.2008.120
73 Wilson W L. Toward the commercial realization of high performance holographic data storage[C]//Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, San Francisco, CA, USA, 2004: 4.
74 Schnoes M, Ihas B, Dhar L, et al. Photopolymer use for holographic data storage[J]. Proceedings of SPIE, 2003, 4988: 68-76. DOI:10.1117/12.474791
75 Anderson K, Curtis K. Polytopic multiplexing[J]. OpticsLetters, 2004, 29(12): 1402-1404. DOI:10.1364/OL.29.001402
76 Tao S Q, Xu M. Spatioangularly-multiplexed three-dimensional holographic disks[J]. Acta Optica Sinica, 1997, 17(8): 1015-1020. DOI:10.3321/j.issn:0253-2239.1997.08.012
陶世荃, 徐敏.采用空间-角度复用的盘式三维全息存储[J].光学学报, 1997, 17(8): 1015-1020. DOI:10.3321/j.issn:0253-2239.1997.08.012
77 Yuan Q, Tao S Q, Song X H, et al. Disk-type 3-D holographic storage in a photorefractive crystal[J]. Chinese Journal of Lasers, 1999, 26(12): 1097-1102. DOI:10.3321/j.issn:0258-7025.1999.12.009
袁泉, 陶世荃, 宋雪华, 等.光折变晶体中的盘式三维全息存储[J].中国激光, 1999, 26(12): 1097-1102. DOI:10.3321/j.issn:0258-7025.1999.12.009
79 Wan Y H, Yuan W, Liu G Q, et al. Study on the characteristics of scattering noise in photorefractive holographic storage[J]. Chinese Journal of Lasers, 2003, 30(6): 529-532. DOI:10.3321/j.issn:0258-7025.2003.06.014
万玉红, 袁韡, 刘国庆, 等.光折变晶体全息存储中散射噪声特性的研究[J].中国激光, 2003, 30(6): 529-532. DOI:10.3321/j.issn:0258-7025.2003.06.014
82 Yao H W, Huang M J, Chen Z Y, et al. Optimization of acrylamide-based photopolymer and its holographic character investigation[J]. Chinese Journal of Lasers, 2002, 29(11): 972-974. DOI:10.3321/j.issn:0258-7025.2002.11.004
姚华文, 黄明举, 陈仲裕, 等.光致聚合物材料中引发剂浓度的优化和全息存储性能研究[J].中国激光, 2002, 29(11): 972-974. DOI:10.3321/j.issn:0258-7025.2002.11.004
86 Bao P, He S R, He Q S, et al. Compensation method for misregistration in pixel-matched holographic data storage system[J]. Optical Technique, 2005, 31(2): 297-298, 301. DOI:10.3321/j.issn:1002-1582.2005.02.042
鲍鹏, 何树荣, 何庆声, 等.像素1: 1匹配的晶体全息存储系统中像素位置偏移的补偿算法[J].光学技术, 2005, 31(2): 297-298, 301. DOI:10.3321/j.issn:1002-1582.2005.02.042
87 Cao L C, He Q S, Wei H Y, et al. Miniaturized volume holographic optical data storage and correlation system with a storage density of 10 Gb/cm3[J]. Chinese Science Bulletin, 2004, 49(23): 2495-2500. DOI:10.3321/j.issn:0023-074X.2004.23.022
曹良才, 何庆声, 尉昊赟, 等. 10 Gb/cm3小型化体全息数据存储及相关识别系统[J].科学通报, 2004, 49(23): 2495-2500. DOI:10.3321/j.issn:0023-074X.2004.23.022
88 Huang X B, He Q S, Wang J G, et al. Effect of performance of SLM and CCD on intrapage noise in volume[J]. Optical Technique, 2002, 28(6): 543-544. DOI:10.3321/j.issn:1002-1582.2002.06.032
黄雄斌, 何庆声, 王建岗, 等.体全息存储中SLM和CCD的性能对页内噪声的影响[J].光学技术, 2002, 28(6): 543-544. DOI:10.3321/j.issn:1002-1582.2002.06.032
89 Jin G F, Cao L C, He Q S, et al. Random modulation in high-density holographic data storage and correlation recognition system[J]. Proceedings of SPIE, 2003, 5206: 125-134. DOI:10.1117/12.505137
90 Li J H, Cao L C, Gu H R, et al. Orthogonal-reference- pattern-modulated shift multiplexing for collinear holographic data storage[J]. Optics Letters, 2012, 37(5): 936-938. DOI:10.1364/OL.37.000936
91 Gu H R, Yin S F, Tan Q F, et al. Optimization of the geometrical shape of the aperture in holographic data storage system[J]. Proceedings of SPIE, 2007, 6827: 68271I. DOI:10.1117/12.755757
92 Wei H Y, Luo S J, He Q S, et al. Novel holographic storage system with two data channels[J]. Proceedings of SPIE, 2005, 5908: 59081F. DOI:10.1117/12.617189
93 Yu Y W, Chen C Y, Sun C C. Increase of signal-to-noise ratio of a collinear holographic storage system with reference modulated by a ring lens array[J]. Optics Letters, 2010, 35(8): 1130-1132. DOI:10.1364/OL.35.001130
94 Yu Y W, Yang C H, Yang T H, et al. Analysis of a lens-array modulated coaxial holographic data storage system with considering recording dynamics of material[J]. Optics Express, 2017, 25(19): 22947-22958. DOI:10.1364/OE.25.022947
95 Sun C C, Yu Y W, Hsieh S C, et al. Point spread function of a collinear holographic storage system[J]. Optics Express, 2007, 15(26): 18111-18118. DOI:10.1364/OE.15.018111
96 Lin X, Huang Y, Shimura T, et al. Fast non-interferometric iterative phase retrieval for holographic data storage[J]. Optics Express, 2017, 25(25): 30905-30915. DOI:10.1364/OE.25.030905
97 Lin X, Huang Y, Li Y, et al. Four-level phase pair encoding and decoding with single interferometric phase retrieval for holographic data storage[J]. Chinese Optics Letters, 2018, 16(3): 032101. DOI:10.3788/COL
98 Tan X D, Horimai H, Arai R, et al. Phase modulated collinear holographic data storage system[C]//International Workshop on Holography and Related Technologies, 2016.
100 Lin X, Ke J, Wu A A, et al. An effective phase modulation in the collinear holographic storage[J]. Proceedings of SPIE, 2014, 9006: 900607. DOI:10.1117/12.2035171
101 Das B, Joseph J, Singh K. Performance analysis of content-addressable search and bit-error rate characteristics of a defocused volume holographic data storage system[J]. Applied Optics, 2007, 46(22): 5461-5470. DOI:10.1364/AO.46.005461
102 Das B, Joseph J, Singh K. Improved data search by zero-order (dc) peak filtering in a defocused volume holographic content-addressable memory[J]. Applied Optics, 2009, 48(1): 55-63. DOI:10.1364/AO.48.000055
103 Sun C C, Tsou R H, Chang W C, et al. Random phase-coded multiplexing of hologram volumes using ground glass[J]. Optical and Quantum Electronics, 1996, 28(10): 1551-1561. DOI:10.1007/BF00326225
104 Gao Q, Kostuk R. Improvement to holographic digital data-storage systems with random and pseudorandom phase masks[J]. Applied Optics, 1997, 36(20): 4853-4861. DOI:10.1364/AO.36.004853
105 Sun C C, Su W C, Wang B, et al. Diffraction selectivity of holograms with random phase encoding[J]. Optics Communications, 2000, 175(1-3): 67-74. DOI:10.1016/S0030-4018(99)00769-5
106 Xu X F, Cai L Z, Wang Y R, et al. Blind phase shift extraction and wavefront retrieval by two-frame phase-shifting interferometry with an unknown phase shift[J]. Optics Communications, 2007, 273(1): 54-59. DOI:10.1016/j.optcom.2006.12.033
107 Jeon S H, Gil S K. 2-step phase-shifting digital holographic optical encryption and error analysis[J]. Journal of the Optical Society of Korea, 2011, 15(3): 244-251. DOI:10.3807/JOSK.2011.15.3.244
108 Hariharan P, Oreb B F, Eiju T. Digital phase-shifting interferometry: a simple error-compensating phase calculation algorithm[J]. Applied Optics, 1987, 26(13): 2504-2506. DOI:10.1364/AO.26.002504
109 Horimai H. Multi-level data write/retrieve by phase-locked collinear holography[C]//Asia Communications and Photonics Conference, Wuhan, 2016: AF1J.2.
110 Xu K, Huang Y, Lin X, et al. Unequally spaced four levels phase encoding in holographic data storage[J]. Optical Review, 2016, 23(6): 1004-1009. DOI:10.1007/s10043-016-0263-1
111 Fienup J R. Reconstruction of a complex-valued object from the modulus of its Fourier transform using a support constraint[J]. Journal of the Optical Society of America A, 1987, 4(1): 118-123. DOI:10.1364/JOSAA.4.000118
112 Fienup J R. Phase retrieval algorithms: a comparison[J]. Applied Optics, 1982, 21(15): 2758-2769. DOI:10.1364/AO.21.002758
113 Fienup J R, Wackerman C C. Phase-retrieval stagnation problems and solutions[J]. Journal of the Optical Society of America A, 1986, 3(11): 1897-1907. DOI:10.1364/JOSAA.3.001897
114 Maiden A M, Rodenburg J M. An improved ptychographical phase retrieval algorithm for diffractive imaging[J]. Ultramicroscopy, 2009, 109(10): 1256-1262. DOI:10.1016/j.ultramic.2009.05.012
115 Pan X C, Liu C, Lin Q, et al. Ptycholographic iterative engine with self-positioned scanning illumination[J]. Optics Express, 2013, 21(5): 6162-6168. DOI:10.1364/OE.21.006162
116 Gureyev T E, Roberts A, Nugent K A. Phase retrieval with the transport-of-intensity equation: matrix solution with use of Zernike polynomials[J]. Journal of the Optical Society of America A, 1995, 12(9): 1932-1942. DOI:10.1364/JOSAA.12.001932
117 Gureyev T E, Nugent K A. Rapid quantitative phase imaging using the transport of intensity equation[J]. Optics Communications, 1997, 133(1-6): 339-346. DOI:10.1016/S0030-4018(96)00454-3
118 Volkov V V, Zhu Y, De Graef M. A new symmetrized solution for phase retrieval using the transport of intensity equation[J]. Micron, 2002, 33(5): 411-416. DOI:10.1016/S0968-4328(02)00017-3
119 Lin X, Fujimura R, Umegaki S, et al. Single-shot phase reconstruction by iterative Fourier transform algorithm in the holographic data storage system[C]//International Symposium on Optical Memory 2016, Kyoto, Japan, 2016.
Keywords:
Funds:
National Natural Science Foundation of China (61475019) and Special Funds of the Central Government Guiding Local Science and Technology Development (2017L3009)
Export Citations as:
For
Get Citation:
Lin Xiao, Hao Jianying, Zheng Mingjie, et al. Optical holographic data storage—The time for new development[J]. Opto-Electronic Engineering, 2019, 46(3): 180642.