1 Cathey W T Jr, Hayes C L, Davis W C, et al. Compensation for atmospheric phase effects at 10.6 μm[J]. Applied Optics, 1970, 9(3): 701–707.
DOI:
10.1364/AO.9.000701
2 Rao X, Li X, Jiang W. Small tabletop adaptive optical systems for human retinal imaging[J]. Proceedings of SPIE, 2002, 4825: 99–108.
DOI:
10.1117/12.451982
3 Jiang W H. Overview of adaptive optics development[J]. Opto-Electronic Engineering, 2018, 45(3): 170489.
DOI:
10.12086/oee.2018.170489
4 Gliss C, Parel J M, Flynn J T, et al. Toward a miniaturized fundus camera[J]. Journal of Biomedical Optics, 2004, 9(1): 126–131.
DOI:
10.1117/1.1631313
5 Huang D, Swanson E A, Lin C P, et al. Optical coherence tomography[J]. Science, 1991, 254(5035): 1178–1181.
DOI:
10.1126/science.1957169
6 Kong W, Lang T T, Gao F, et al. Design of high-resolution wide field of view conf ocal line scanning laser microscopy[J]. Opto-Electronic Engineering, 2017, 44(6): 616–620.
DOI:
10.3969/j.issn.1003-501X.2017.06.007
7 Wu C R, Ma Z Z, Hu L N, et al. Analysis of systemic factors associated with diabetic retinopathy[J]. International Journal of Ophthalmology, 2007, 7(4): 1056–1059.
DOI:
10.3969/j.issn.1672-5123.2007.04.050
8 Sheppard C J R, Campos J, Escalera J C, et al. Two-zone pupil filters[J]. Optics Communications, 2008, 281(5): 913–922.
DOI:
10.1016/j.optcom.2007.10.050
9 Sheppard C J R, Campos J, Escalera J C, et al. Three-zone pupil filters[J]. Optics Communications, 2008, 281(14): 3623–3630.
DOI:
10.1016/j.optcom.2008.03.047
10 Sales T R M, Morris G M. Axial superresolution with phase-only pupil filters[J]. Optics Communications, 1998, 156(4–6): 227–230.
DOI:
10.1016/S0030-4018(98)00455-6
11 Gong W, Si K, Sheppard C J. Optimization of axial resolution in a confocal microscope with D-shaped apertures[J]. Applied Optics, 2009, 48(20): 3998–4002.
DOI:
10.1364/AO.48.003998
12 Ma Y, Kuang C F, Gong W, et al. Improvements of axial resolution in confocal microscopy with fan-shaped apertures[J]. Applied Optics, 2015, 54(6): 1354–1362.
DOI:
10.1364/AO.54.001354
13 Liang J Z, Williams D R. Aberrations and retinal image quality of the normal human eye[J]. Journal of the Optical Society of America A Optics, Image Science, and Vision, 1997, 14(11): 2873–2883.
DOI:
10.1364/JOSAA.14.002873
14 Thibos L N, Ye M, Zhang X X, et al. The chromatic eye: a new reduced-eye model of ocular chromatic aberration in humans[J]. Applied Optics, 1992, 31(19): 3594–3600.
DOI:
10.1364/AO.31.003594
15 Dai Y, Xiao F, Zhao J L, et al. Ocular aberrations manipulation with adaptive optics and its application[J]. Opto-Electronic Engineering, 2018, 45(3): 170703.
DOI:
10.12086/oee.2018.170703
16 Wang J Y, Candy T R, Teel D F W, et al. Longitudinal chromatic aberration of the human infant eye[J]. Journal of the Optical Society of America A Optics, Image Science, and Vision, 2008, 25(9): 2263–2270.
DOI:
10.1364/JOSAA.25.002263
17 Fernández E J, Artal P. Ocular aberrations up to the infrared range: from 632.8 to 1070 nm[J]. Optics Express, 2008, 16(26): 21199–21208.
DOI:
10.1364/OE.16.021199
18 Manzanera S, Canovas C, Prieto P M, et al. A wavelength tunable wavefront sensor for the human eye[J]. Optics Express, 2008, 16(11): 7748–7755.
DOI:
10.1364/OE.16.007748
19 Marcos S, Burns S A, Moreno-Barriusop E, et al. A new approach to the study of ocular chromatic aberrations[J]. Vision Research, 1999, 39(26): 4309–4323.
DOI:
10.1016/S0042-6989(99)00145-5
22 Torok P, Laczik Z, Sheppard C J. Effect of half-stop lateral misalignment on imaging of dark-field and stereoscopic confocal microscopes[J]. Applied Optics, 1996, 35(34): 6732–6739.
DOI:
10.1364/AO.35.006732
23 Scoles D, Sulai Y N, Dubra A. In vivo dark-field imaging of the retinal pigment epithelium cell mosaic[J]. Biomedical Optics Express, 2013, 4(9): 1710–1723.
DOI:
10.1364/BOE.4.001710