便携式紫外-可见光谱仪设计及关键技术研究

王国栋, 夏果, 李志远, 等. 便携式紫外-可见光谱仪设计及关键技术研究[J]. 光电工程, 2018, 45(10): 180195. doi: 10.12086/oee.2018.180195
引用本文: 王国栋, 夏果, 李志远, 等. 便携式紫外-可见光谱仪设计及关键技术研究[J]. 光电工程, 2018, 45(10): 180195. doi: 10.12086/oee.2018.180195
Wang Guodong, Xia Guo, Li Zhiyuan, et al. Design and key technology research of portable UV-VIS spectrometer[J]. Opto-Electronic Engineering, 2018, 45(10): 180195. doi: 10.12086/oee.2018.180195
Citation: Wang Guodong, Xia Guo, Li Zhiyuan, et al. Design and key technology research of portable UV-VIS spectrometer[J]. Opto-Electronic Engineering, 2018, 45(10): 180195. doi: 10.12086/oee.2018.180195

便携式紫外-可见光谱仪设计及关键技术研究

  • 基金项目:
    中国科学院通用光学定标与表征重点实验室开放课题资助(JZ2016QTXM1135)
详细信息
    作者简介:
    通讯作者: 夏果(1983-),男,博士,助理研究员,主要从事光谱仪器设计及应用的研究。E-mail:xiaguo@hfut.edu.cn
  • 中图分类号: TH744.1

Design and key technology research of portable UV-VIS spectrometer

  • Fund Project: Supported by Open subject of Key Laboratory of General Optical Calibration and Characterization Technology of the Chinese Academy of Sciences (JZ2016QTXM1135)
More Information
  • 随着紫外光谱探测技术的广泛应用,低成本便携式紫外-可见光谱仪成为该领域的研究热点。本文首先依据交叉型Czerny-Turner结构设计了便携式紫外光谱仪光路结构。其次,针对性研究了紫外光谱仪的关键器件:紫外探测器和闪耀光栅。利用Lumogen荧光材料和蒸镀成膜法制作镀膜紫外增强CCD,并分析了荧光薄膜在CCD表面的位置对分辨率的影响;从理论上分析了闪耀光栅对于紫外波段的多级衍射效率的影响,确定了紫外光谱仪对于闪耀光栅的选择。最后,研制的便携式紫外-可见光谱仪样机的性能测试结果表明,200 nm~900 nm波段、25 μm狭缝宽度、600 lp/mm、300 nm闪耀光栅配置下分辨率整体小于1.5 nm,200 nm~300 nm紫外波段的光谱响应度提高到20%,实现了便携式紫外-可见光谱仪的设计要求。

  • Overview: With the widespread application of ultraviolet spectral detection technology, low-cost portable ultraviolet spectrometer has become a research hotspot in this field. For example, in chemical detection, the electronic spectrum of most molecules, which are in the ultraviolet region, can characterize the chemical reaction of a substance. Various experiment and application researches can be carried out with the qualitative and quantitative analysis of the molecular electronic spectrum using a ultraviolet spectrometer, such as analyzing the molecular composition of the analyte or determining whether the substance has undergone a chemical reaction or not. Owing to the absorption of ultraviolet light by the silicon substrate in the detector, it is hard to generate signal charges in the detector for the ultraviolet light. Therefore, the conventional spectrometer has a very low response to the ultraviolet band. In order to improve the response of the spectrometer to the UV band, the spectrum of the spectrometer's response is broadened. This article uses a simple and convenient method to improve the traditional spectrometer so that it can measure ultraviolet band. Based on this method, a UV-visible portable spectrometer prototype was developed. The innovations of the method proposed in this paper mainly include the following two points. First, a layer of fluorescent film is evaporated on the surface of the detector to convert ultraviolet light into visible light, thereby improving the ultraviolet responsivity of the detector. Second, we optimize the performance of the components in the spectrometer, thus increasing the incident light energy in the UV band. The structure of this paper is organized as follows. First, the optical path of the traditional portable cross-type Czerny-Turner structure spectrometer was designed. Second, the key components of the UV spectrometer were studied, namely UV detectors and blazed gratings. UV-enhanced CCDs were fabricated using Lumogen fluorescent material and vapor deposition film-forming method. The influence of the position of the fluorescent film on the CCD surface was analyzed. Based on the effects of blazed gratings on the multi-order diffraction efficiency in the ultraviolet region, the choice of a blazed grating for the UV spectrometer was determined. Finally, we developed an improved portable UV-visible spectrometer prototype. The performance test results show that its overall resolution of 200 nm~900 nm band is less than 1.5 nm when using 25 μm slit width, 600 lp/mm, and 300 nm blazed grating configurations. The spectral responsivity of 200 nm~300 nm ultraviolet band is increased to 20%, and the signal-to-noise ratio rises by about 30 times, meeting the design requirements of the portable UV-visible spectrometer.

  • 加载中
  • 图 1  交叉非对称型Czerny-Turner系统光路图

    Figure 1.  Layout of crossed-asymmetric Czerny-Turner system

    图 2  初始参数设计流程

    Figure 2.  Flowchart of determining initial parameters

    图 3  优化后光谱仪光路

    Figure 3.  Optimized layout of the crossed-asymmetric Czerny-Turner spectrometer

    图 4  像面点列图

    Figure 4.  Spot diagrams of image plane

    图 5  Y轴方向点列均方根半径

    Figure 5.  RMS spot Y versus wavelength

    图 6  镀膜CCD的参数测试曲线。(a) 253 nm紫外光入射CCD响应曲线;(b)镀膜CCD的光谱响应曲线

    Figure 6.  The parameter test curve of the coated CCD. (a) CCD response curves of 253 nm ultraviolet light incident; (b) Spectral response curves of coated CCD

    图 7  不同闪耀波长的不同级次光栅效率曲线。(a) 500 nm的一级光栅效率曲线;(b) 300 nm的一级光栅效率曲线;(c) 500 nm的二级光栅效率曲线;(d) 300 nm的二级光栅效率曲线

    Figure 7.  Different order relative efficiency curves at different blaze wavelengths. First order relative efficiency curve at blaze wavelength of (a) 500 nm and (b) 300 nm; Second order relative efficiency curve at blaze wavelength of (c) 500 nm and (d) 300 nm

    图 8  便携式紫外-可见光谱仪样机

    Figure 8.  The prototype of portable UV-VIS spectrometer

    图 9  500 nm闪耀波长光栅的汞氩灯光谱。(a)镀膜前光谱图;(b)镀膜后光谱图

    Figure 9.  Hg-Ar spectra of blaze grating at blaze wavelength of 500 nm with (a) original CCD and (b) coated CCD

    图 10  300 nm闪耀波长光栅的汞氩灯光谱。(a)镀膜前光谱图;(b)镀膜后光谱图

    Figure 10.  Hg-Ar spectra of blaze grating at blaze wavelength of 300 nm with (a) original CCD and (b) coated CCD

    图 11  便携式紫外-可见光谱仪测试汞氩灯光谱。(a)便携式紫外-可见光谱仪汞氩灯光谱;(b) 253.652 nm的光谱图形;(c) 576.960 nm和579.066 nm的光谱图形

    Figure 11.  Hg-Ar spectrum with portable UV-VIS spectrometer. (a) Hg-Ar spectrum with portable UV-VIS spectrometer; (b) The spectrum of 253.652 nm; (c) The spectrum at 576.960 nm and 579.066 nm

    表 1  光学元件参数

    Table 1.  Parameters of optical elements

    Optical elements Parameters Value
    Slit a 25 μm
    Collimating mirror f1 38.7 mm
    Focusing mirror f2 70.8 mm
    Blazing grating n 600 lp/mm
    下载: 导出CSV

    表 2  优化后结构参量

    Table 2.  Parameters of optimized structure

    Parameters Value
    i 24.8°
    θ 5.2°
    Φ 30°
    $\varphi $1 5.2°
    $\varphi $2 13°
    $\varphi $ -1.3°
    LSM1 37.8 mm
    LM1G 40 mm
    LGM2 40 mm
    LM2D 69.95 mm
    下载: 导出CSV

    表 3  改进前后光谱仪中其它波长与546.074 nm光强的相对比

    Table 3.  The light intensity ratio between other wavelengths and 546.074 nm of spectrometer before and after improvement

    Wavelength/nm Before improvement After improvement
    253.652 0.03 1.32
    296.728 0.03 0.11
    313.155 0.04 0.34
    365.015 0.45 0.48
    546.074 1 1
    下载: 导出CSV
  • [1]

    杨杰.紫外探测技术的应用与进展[J].光电子技术, 2011, 31(4): 274–278. http://d.old.wanfangdata.com.cn/Periodical/gdzjs201104012

    Yang J. The application and development of UV detection technology[J]. Optoelectronic Technology, 2011, 31(4): 274–278. http://d.old.wanfangdata.com.cn/Periodical/gdzjs201104012

    [2]

    Weiser H, Vitz R C, Moos H W, et al. Sensitive far uv spectrograph with a multispectral element microchannel plate detector for rocket-borne astronomy[J]. Applied Optics, 1976, 15(12): 3123–3130. doi: 10.1364/AO.15.003123

    [3]

    陈雪, 李宗轩, 闫丰, 等.日盲紫外像增强器绝对光谱响应测试系统[J].光电工程, 2016, 43(5): 8–14. doi: 10.3969/j.issn.1003-501X.2016.05.002

    Chen X, Li Z X, Yan F, et al. Test system for absolute spectral response of SBUV image intensifier[J]. Opto-Electronic Engineering, 2016, 43(5): 8–14. doi: 10.3969/j.issn.1003-501X.2016.05.002

    [4]

    冯帆, 段发阶, 伯恩, 等.一种小型中阶梯光栅光谱仪的光学设计[J].光电工程, 2014, 41(7): 20–25. doi: 10.3969/j.issn.1003-501X.2014.07.004

    Feng F, Duan F J, Bo E, et al. An optical design of small-size echelle spectrograph[J]. Opto-Electronic Engineering, 2014, 41(7): 20–25. doi: 10.3969/j.issn.1003-501X.2014.07.004

    [5]

    Franks W A R, Kiik M J, Nathan A. UV-responsive CCD image sensors with enhanced inorganic phosphor coatings[J]. IEEE Transactions on Electron Devices, 2003, 50(2): 352–358. doi: 10.1109/TED.2003.809029

    [6]

    刘琼, 马守宝, 钱晓晨, 等. CMOS传感器紫外敏化膜层的厚度优化及其光电性能测试[J].光子学报, 2017, 46(6): 0604002. http://d.old.wanfangdata.com.cn/Periodical/gzxb201706031

    Liu Q, Ma S B, Qian X C, et al. Thickness optimization and photoelectric performance test of UV sensitized film of COMS sensor[J]. Acta Photonica Sinica, 2017, 46(6): 0604002. http://d.old.wanfangdata.com.cn/Periodical/gzxb201706031

    [7]

    Alexander S J. Phosphor coated UV-responsive CCD image sensors[D]. Waterloo, Ontario: University of Waterloo, 2002.

    [8]

    Franks W A R. Inorganic phosphor coatings for ultraviolet responsive image detectors[D]. Waterloo, Ontario: University of Waterloo, 2000.

    [9]

    童建平, 高建勋, 汪飞, 等.微型光谱仪中传感器S11639的非线性校正[J].光电工程, 2017, 44(11): 1101–1106. 10.3969/j.issn.1003-501X.2017.11.010

    Tong J P, Gao J X, Wang F, et al. Nonlinear correction of the sensor S11639 in mini-spectrometer[J]. Opto-Electronic Engineering, 2017, 44(11): 1101–1106. 10.3969/j.issn.1003-501X.2017.11.010

    [10]

    Cheng L, Chen Y P, Zhu R B, et al. Design and Realization of Micro Fiber Spectrometers for Bioluminescence Detecting Systems' Stray Light Detection[J]. Bioorganic & Medicinal Chemistry Letters, 2006, 14(2):427–429. http://ieeexplore.ieee.org/xpl/abstractReferences.jsp?tp=&arnumber=4134752

    [11]

    Xia G, Wu S, Wang G D, et al. Astigmatism-free Czerny-Turner compact spectrometer with cylindrical mirrors[J]. Applied Optics, 2017, 56(32): 9069–9073. doi: 10.1364/AO.56.009069

    [12]

    Kingslake R. Who? Discovered coddington's Equations?[J]. Optics and Photonics News, 1994, 5(8): 20–23. doi: 10.1364/OPN.5.8.000020

    [13]

    Reader J. Optimizing Czerny–Turner spectrographs: a comparison between analytic theory and ray tracing[J]. Journal of the Optical Society of America, 1969, 59(9): 1189–1196. doi: 10.1364/JOSA.59.001189

    [14]

    Keough S J, Hanley T L, Wedding A B, et al. Grazing incidence X-ray studies of ultra-thin Lumogen films[J]. Surface Science, 2007, 601(24): 5744–5749. doi: 10.1016/j.susc.2007.06.053

    [15]

    王丽辉, 王孝坤, 陈波.增强CCD紫外和极紫外成像的荧光物质的研究[J].光学技术, 2006, 32(S1): 479–481. http://d.old.wanfangdata.com.cn/Periodical/gxjs2006z1129

    Wang L H, Wang X K, Chen B. Study of ultraviolet and extreme ultraviolet phosphors for imaging detector[J]. Optical Technique, 2006, 32(S1): 479–481. http://d.old.wanfangdata.com.cn/Periodical/gxjs2006z1129

    [16]

    张大伟, 田鑫, 黄元申, 等. CCD紫外敏感Lumogen薄膜制备与光谱表征[J].光谱学与光谱分析, 2010, 30(5): 1171–1174. doi: 10.3964/j.issn.1000-0593(2010)05-1171-04

    Zhang D W, Tian X, Huang Y S, et al. Preparation and spectral characterization of Lumogen coatings for UV-responsive CCD image sensors[J]. Spectroscopy and Spectral Analysis, 2010, 30(5): 1171–1174. doi: 10.3964/j.issn.1000-0593(2010)05-1171-04

    [17]

    Tao C X, Ruan J, Shu S P, et al. Thickness dependence of ultraviolet-excited photoluminescence efficiency of lumogen film coated on charge-coupled device[J]. Current Optics and Photonics, 2017, 1(4): 284–288. http://www.etoponline.com/copp/abstract.cfm?uri=copp-1-4-284

    [18]

    杜晨光, 孙利群, 丁志田.利用晕苯增强CCD紫外响应的实验研究[J].光学技术, 2010, 36(5): 753–757. http://d.old.wanfangdata.com.cn/Periodical/gxjs201005025

    Du C G, Sun L Q, Ding Z T. Experiment study of enhancing CCD ultraviolet response using coronene[J]. Optical Technique, 2010, 36(5): 753–757. http://d.old.wanfangdata.com.cn/Periodical/gxjs201005025

    [19]

    Zhao Y H, Yan F, Lou H W, et al. Measurement technology for relative spectral responsivity of the ultraviolet ICCD[J]. Spectroscopy and Spectral Analysis, 2009, 29(5): 1371–1374. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gpxygpfx200905051

    [20]

    赵友全, 江磊, 何峰, 等.线阵CCD光电响应非线性特性测定与分析[J].光电工程, 2015, 42(7): 19–23. doi: 10.3969/j.issn.1003-501X.2015.07.004

    Zhao Y Q, Jiang L, He F, et al. Measurement and analysis of linear CCD nonlinear optical response characteristics[J]. Opto-Electronic Engineering, 2015, 42(7): 19–23. doi: 10.3969/j.issn.1003-501X.2015.07.004

    [21]

    Mouroulis P, Wilson D W, Maker P D, et al. Convex grating types for concentric imaging spectrometers[J]. Applied Optics, 1998, 37(31): 7200–7208. doi: 10.1364/AO.37.007200

  • 加载中

(11)

(3)

计量
  • 文章访问数:  10771
  • PDF下载数:  3833
  • 施引文献:  0
出版历程
收稿日期:  2018-04-16
修回日期:  2018-06-18
刊出日期:  2018-10-01

目录

/

返回文章
返回