Wang Guodong, Xia Guo, Li Zhiyuan, et al. Design and key technology research of portable UV-VIS spectrometer[J]. Opto-Electronic Engineering, 2018, 45(10): 180195. doi: 10.12086/oee.2018.180195
Citation: Wang Guodong, Xia Guo, Li Zhiyuan, et al. Design and key technology research of portable UV-VIS spectrometer[J]. Opto-Electronic Engineering, 2018, 45(10): 180195. doi: 10.12086/oee.2018.180195

Design and key technology research of portable UV-VIS spectrometer

    Fund Project: Supported by Open subject of Key Laboratory of General Optical Calibration and Characterization Technology of the Chinese Academy of Sciences (JZ2016QTXM1135)
More Information
  • With the widespread application of ultraviolet spectroscopy, low-cost portable ultraviolet spectrometer has become a research focus in this field. Firstly, the optical structure of the portable UV-VIS spectrometer was designed based on the crossed-asymmetric Czerny-Turner structure in the paper. Secondly, the key devices of ultraviolet spectrometer, namely ultraviolet detectors and blazed gratings, were studied. The coated UV-enhanced CCDs were fabricated using Lumogen fluorescent materials and vacuum coating methods. The influence of the position on the CCD surface of the fluorescent film on the resolution was analyzed. The effect of blazed gratings on the multi-order diffraction efficiency in the ultraviolet region was theoretically studied. Finally, the test results of performance of a portable UV-VIS spectrometer prototype show that the resolution of the 200 nm~900 nm band, 25 μm slit width, 600 lp/mm, 300 nm blazed grating configuration is less than 1.5 nm and the spectral responsivity increases to 20% in the spectral range varying from 200 nm to 300 nm, which meets the design requirements of the portable UV-VIS spectrometer.
  • 加载中
  • [1] 杨杰.紫外探测技术的应用与进展[J].光电子技术, 2011, 31(4): 274–278.

    Google Scholar

    Yang J. The application and development of UV detection technology[J]. Optoelectronic Technology, 2011, 31(4): 274–278.

    Google Scholar

    [2] Weiser H, Vitz R C, Moos H W, et al. Sensitive far uv spectrograph with a multispectral element microchannel plate detector for rocket-borne astronomy[J]. Applied Optics, 1976, 15(12): 3123–3130. doi: 10.1364/AO.15.003123

    CrossRef Google Scholar

    [3] 陈雪, 李宗轩, 闫丰, 等.日盲紫外像增强器绝对光谱响应测试系统[J].光电工程, 2016, 43(5): 8–14. doi: 10.3969/j.issn.1003-501X.2016.05.002

    CrossRef Google Scholar

    Chen X, Li Z X, Yan F, et al. Test system for absolute spectral response of SBUV image intensifier[J]. Opto-Electronic Engineering, 2016, 43(5): 8–14. doi: 10.3969/j.issn.1003-501X.2016.05.002

    CrossRef Google Scholar

    [4] 冯帆, 段发阶, 伯恩, 等.一种小型中阶梯光栅光谱仪的光学设计[J].光电工程, 2014, 41(7): 20–25. doi: 10.3969/j.issn.1003-501X.2014.07.004

    CrossRef Google Scholar

    Feng F, Duan F J, Bo E, et al. An optical design of small-size echelle spectrograph[J]. Opto-Electronic Engineering, 2014, 41(7): 20–25. doi: 10.3969/j.issn.1003-501X.2014.07.004

    CrossRef Google Scholar

    [5] Franks W A R, Kiik M J, Nathan A. UV-responsive CCD image sensors with enhanced inorganic phosphor coatings[J]. IEEE Transactions on Electron Devices, 2003, 50(2): 352–358. doi: 10.1109/TED.2003.809029

    CrossRef Google Scholar

    [6] 刘琼, 马守宝, 钱晓晨, 等. CMOS传感器紫外敏化膜层的厚度优化及其光电性能测试[J].光子学报, 2017, 46(6): 0604002.

    Google Scholar

    Liu Q, Ma S B, Qian X C, et al. Thickness optimization and photoelectric performance test of UV sensitized film of COMS sensor[J]. Acta Photonica Sinica, 2017, 46(6): 0604002.

    Google Scholar

    [7] Alexander S J. Phosphor coated UV-responsive CCD image sensors[D]. Waterloo, Ontario: University of Waterloo, 2002.

    Google Scholar

    [8] Franks W A R. Inorganic phosphor coatings for ultraviolet responsive image detectors[D]. Waterloo, Ontario: University of Waterloo, 2000.

    Google Scholar

    [9] 童建平, 高建勋, 汪飞, 等.微型光谱仪中传感器S11639的非线性校正[J].光电工程, 2017, 44(11): 1101–1106.

    Google Scholar

    Tong J P, Gao J X, Wang F, et al. Nonlinear correction of the sensor S11639 in mini-spectrometer[J]. Opto-Electronic Engineering, 2017, 44(11): 1101–1106.

    Google Scholar

    [10] Cheng L, Chen Y P, Zhu R B, et al. Design and Realization of Micro Fiber Spectrometers for Bioluminescence Detecting Systems' Stray Light Detection[J]. Bioorganic & Medicinal Chemistry Letters, 2006, 14(2):427–429.

    Google Scholar

    [11] Xia G, Wu S, Wang G D, et al. Astigmatism-free Czerny-Turner compact spectrometer with cylindrical mirrors[J]. Applied Optics, 2017, 56(32): 9069–9073. doi: 10.1364/AO.56.009069

    CrossRef Google Scholar

    [12] Kingslake R. Who? Discovered coddington's Equations?[J]. Optics and Photonics News, 1994, 5(8): 20–23. doi: 10.1364/OPN.5.8.000020

    CrossRef Google Scholar

    [13] Reader J. Optimizing Czerny–Turner spectrographs: a comparison between analytic theory and ray tracing[J]. Journal of the Optical Society of America, 1969, 59(9): 1189–1196. doi: 10.1364/JOSA.59.001189

    CrossRef Google Scholar

    [14] Keough S J, Hanley T L, Wedding A B, et al. Grazing incidence X-ray studies of ultra-thin Lumogen films[J]. Surface Science, 2007, 601(24): 5744–5749. doi: 10.1016/j.susc.2007.06.053

    CrossRef Google Scholar

    [15] 王丽辉, 王孝坤, 陈波.增强CCD紫外和极紫外成像的荧光物质的研究[J].光学技术, 2006, 32(S1): 479–481.

    Google Scholar

    Wang L H, Wang X K, Chen B. Study of ultraviolet and extreme ultraviolet phosphors for imaging detector[J]. Optical Technique, 2006, 32(S1): 479–481.

    Google Scholar

    [16] 张大伟, 田鑫, 黄元申, 等. CCD紫外敏感Lumogen薄膜制备与光谱表征[J].光谱学与光谱分析, 2010, 30(5): 1171–1174. doi: 10.3964/j.issn.1000-0593(2010)05-1171-04

    CrossRef Google Scholar

    Zhang D W, Tian X, Huang Y S, et al. Preparation and spectral characterization of Lumogen coatings for UV-responsive CCD image sensors[J]. Spectroscopy and Spectral Analysis, 2010, 30(5): 1171–1174. doi: 10.3964/j.issn.1000-0593(2010)05-1171-04

    CrossRef Google Scholar

    [17] Tao C X, Ruan J, Shu S P, et al. Thickness dependence of ultraviolet-excited photoluminescence efficiency of lumogen film coated on charge-coupled device[J]. Current Optics and Photonics, 2017, 1(4): 284–288.

    Google Scholar

    [18] 杜晨光, 孙利群, 丁志田.利用晕苯增强CCD紫外响应的实验研究[J].光学技术, 2010, 36(5): 753–757.

    Google Scholar

    Du C G, Sun L Q, Ding Z T. Experiment study of enhancing CCD ultraviolet response using coronene[J]. Optical Technique, 2010, 36(5): 753–757.

    Google Scholar

    [19] Zhao Y H, Yan F, Lou H W, et al. Measurement technology for relative spectral responsivity of the ultraviolet ICCD[J]. Spectroscopy and Spectral Analysis, 2009, 29(5): 1371–1374.

    Google Scholar

    [20] 赵友全, 江磊, 何峰, 等.线阵CCD光电响应非线性特性测定与分析[J].光电工程, 2015, 42(7): 19–23. doi: 10.3969/j.issn.1003-501X.2015.07.004

    CrossRef Google Scholar

    Zhao Y Q, Jiang L, He F, et al. Measurement and analysis of linear CCD nonlinear optical response characteristics[J]. Opto-Electronic Engineering, 2015, 42(7): 19–23. doi: 10.3969/j.issn.1003-501X.2015.07.004

    CrossRef Google Scholar

    [21] Mouroulis P, Wilson D W, Maker P D, et al. Convex grating types for concentric imaging spectrometers[J]. Applied Optics, 1998, 37(31): 7200–7208. doi: 10.1364/AO.37.007200

    CrossRef Google Scholar

  • Overview: With the widespread application of ultraviolet spectral detection technology, low-cost portable ultraviolet spectrometer has become a research hotspot in this field. For example, in chemical detection, the electronic spectrum of most molecules, which are in the ultraviolet region, can characterize the chemical reaction of a substance. Various experiment and application researches can be carried out with the qualitative and quantitative analysis of the molecular electronic spectrum using a ultraviolet spectrometer, such as analyzing the molecular composition of the analyte or determining whether the substance has undergone a chemical reaction or not. Owing to the absorption of ultraviolet light by the silicon substrate in the detector, it is hard to generate signal charges in the detector for the ultraviolet light. Therefore, the conventional spectrometer has a very low response to the ultraviolet band. In order to improve the response of the spectrometer to the UV band, the spectrum of the spectrometer's response is broadened. This article uses a simple and convenient method to improve the traditional spectrometer so that it can measure ultraviolet band. Based on this method, a UV-visible portable spectrometer prototype was developed. The innovations of the method proposed in this paper mainly include the following two points. First, a layer of fluorescent film is evaporated on the surface of the detector to convert ultraviolet light into visible light, thereby improving the ultraviolet responsivity of the detector. Second, we optimize the performance of the components in the spectrometer, thus increasing the incident light energy in the UV band. The structure of this paper is organized as follows. First, the optical path of the traditional portable cross-type Czerny-Turner structure spectrometer was designed. Second, the key components of the UV spectrometer were studied, namely UV detectors and blazed gratings. UV-enhanced CCDs were fabricated using Lumogen fluorescent material and vapor deposition film-forming method. The influence of the position of the fluorescent film on the CCD surface was analyzed. Based on the effects of blazed gratings on the multi-order diffraction efficiency in the ultraviolet region, the choice of a blazed grating for the UV spectrometer was determined. Finally, we developed an improved portable UV-visible spectrometer prototype. The performance test results show that its overall resolution of 200 nm~900 nm band is less than 1.5 nm when using 25 μm slit width, 600 lp/mm, and 300 nm blazed grating configurations. The spectral responsivity of 200 nm~300 nm ultraviolet band is increased to 20%, and the signal-to-noise ratio rises by about 30 times, meeting the design requirements of the portable UV-visible spectrometer.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Tables(3)

Article Metrics

Article views(10775) PDF downloads(3833) Cited by(0)

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint