哈特曼传感器子孔径光斑的局部自适应阈值分割方法

李旭旭, 李新阳, 王彩霞. 哈特曼传感器子孔径光斑的局部自适应阈值分割方法[J]. 光电工程, 2018, 45(10): 170699. doi: 10.12086/oee.2018.170699
引用本文: 李旭旭, 李新阳, 王彩霞. 哈特曼传感器子孔径光斑的局部自适应阈值分割方法[J]. 光电工程, 2018, 45(10): 170699. doi: 10.12086/oee.2018.170699
Li Xuxu, Li Xinyang, Wang Caixia. Local adaptive threshold segmentation method for subapture spots of Shack-Hartmann sensor[J]. Opto-Electronic Engineering, 2018, 45(10): 170699. doi: 10.12086/oee.2018.170699
Citation: Li Xuxu, Li Xinyang, Wang Caixia. Local adaptive threshold segmentation method for subapture spots of Shack-Hartmann sensor[J]. Opto-Electronic Engineering, 2018, 45(10): 170699. doi: 10.12086/oee.2018.170699

哈特曼传感器子孔径光斑的局部自适应阈值分割方法

  • 基金项目:
    国家自然科学基金资助项目(61505215)
详细信息
    作者简介:
    通讯作者: 李新阳(1971-),男,博士,研究员,主要从事自适应光学及其应用中的信号处理和自动控制技术的研究。E-mail:xyli@ioe.ac.cn
  • 中图分类号: O436.3

Local adaptive threshold segmentation method for subapture spots of Shack-Hartmann sensor

  • Fund Project: Supported by National Natural Science Foundation of China (61505215)
More Information
  • 夏克-哈特曼传感器的质心偏移估计精度受噪声的影响非常大,在传统质心法(CoG)中尤为突出,因而阈值的选取十分重要。本文提出了一种基于统计排序的局部自适应阈值分割方法,并与传统的全局阈值法进行对比,发现自适应的局部阈值能够更加有效地分割出阵列光斑,从而减小背景噪声对质心估计的影响,降低波面复原误差。本文通过静态相差的测量实验,从质心偏移估计的精度和波前复原精度两个方面进行分析,验证了该方法的有效性。另外,本文发现自适应阈值结合灰度加权的质心提取方法,是对传统质心法的较好改进,可以有效提高峰值信噪比大约10~40的光斑质心提取精度。

  • Overview: The accuracy of centroid estimation for Shcak-Hartmann wavefront sensor is highly dependent on noise, especially for the centre of gravity (CoG) method. Therefore, threshold selection is very important. A globally estimated threshold using the best threshold method (mean of noise plus three times of its standard deviation) ignores the difference between subaptures, thus causing large centroiding estimation error for subaptures with higher noise level. Therefore we propose an adaptive threshold segmentation method based on statistical rank, which can reduce the influence of background noise effectively. The pixels within a subapture is ranked by their intensities at first. The mean and standard deviation of the subapture noise is estimated using the last certain numbers of pixels. The number of pixels used for noise estimation is determined by estimating the size of Shack-Hartmann spots, which is related to the focal length, the wavelength, the diameter of micro lens and the size of pixel.

    An experiment measuring static aberration was conducted, the accuracy of centroid estimation and wavefront reconstruction both testify the effectiveness of this method. Different from theoretical simulations, the ideal position of a spot is unknown in real experiments. However we have two ways to evaluate the accuracy of centroiding methods. Firtly, the actual postion of a certain subapture is constant for static aberrations, and the variation of centroiding for a subapture within multiple frames can be calculated and used as a criteria. Another is that we calculate the center of a spot under high signal-to-noise ratio (SNR) as the ideal position, which can be used to estimate the errors under low SNR conditions. Since the intensity of a subapture increases with the exposure time, we controlled the signal-to-noise ratio by adjusting the exposure time of the camera, which was set as 10 ms, 5 ms, 2 ms and 1 ms. Furthermore, the wavefront reconstruction errors (PV and RMS) had been calculated and displayed within this paper.

    We also found that combing adaptive threshold method with intensity weighted centroiding (IWC) method can improve the performance of traditional centre of gravity method. It achieves higher centroiding accuracy under low SNR conditions (10 < SNRp < 40), comparing with the traditional method. Although several methods have been proposed to improve the CoG method, such as using Gaussian weighting function or window, the center of the weighting function or the window is difficult to define at first. However, IWC method can avoid this problem by simply using the intensities of the spot itself and the choice of parameter is much more flexible and easy.

  • 加载中
  • 图 1  夏克—哈特曼传感器原理图

    Figure 1.  Principle diagram of Shack-Hartmann sensor

    图 2  相机靶面区域划分示意图

    Figure 2.  Area division on a detector target surface

    图 3  经过不同阈值处理的光斑阵列图。(a)全局阈值Tn1;(b)全局阈值Tn3;(c)局部自适应阈值

    Figure 3.  Spot array pattern obtained by different thresholding methods. (a) Gloabal thresholding Tn1; (b) Gloabal thresholding Tn3; (c) Local adaptive thresholding

    图 4  静态相差测量实验光路图

    Figure 4.  The light path schematic of static aberration measuring experiment

    图 5  测量得到的标准波面

    Figure 5.  The estimated standard wavefront

    图 6  采用不同阈值方法时的复原误差。(a)全局阈值Tn1;(b)全局阈值Tn3;(c)局部自适应阈值

    Figure 6.  Wavefront reconstruction error using different threshold methods. (a) Gloabal thresholding Tn1; (b) Gloabal thresholding Tn3; (c) Local adaptive thresholding

    图 7  不同信噪比下参数q与质心测量起伏的关系

    Figure 7.  Relationship between q and deviation of centroiding error under different SNR levels

    表 1  靶面不同区域噪声分布的统计参数

    Table 1.  Statistical parameters of noise at different target surface regions

    信噪比等级 四角 中心 间隙 靶面上最高信噪比
    衰减片 曝光时间/ms μn1 σn1 Tn1 μn2 σn2 Tn2 μn3 σn3 Tn3 lp SNRp
    L1 1 10 100.9 4.1 114 109.4 6.4 129 120.4 9.8 150 4566 465
    L2 1 5 99.4 3.8 111 103.3 5.0 119 108.8 6.4 128 2238 349
    L3 1 2 98.8 3.1 109 99.9 4.1 113 102.1 4.6 116 882 191
    L4 1 1 98.2 3.0 108 98.9 3.5 110 100.0 3.9 112 481 123
    L5 2 10 98.5 3.4 109 98.8 3.7 110 99.3 4.4 113 307 69
    L6 2 5 98.1 3.4 109 98.6 3.5 110 99.0 4.1 112 153 37
    L7 2 2 98.2 3.2 108 98.2 3.1 108 98.5 3.2 109 67 20
    下载: 导出CSV

    表 2  三种阈值方法在不同曝光时间下的质心起伏误差

    Table 2.  Diviation of CEE under different exposure time using three thresholding methods

    阈值方法 10 ms 5 ms 2 ms 1ms
    RMS-σx RMS-σy RMS-σx RMS-σy RMS-σx RMS-σy RMS-σx RMS-σy
    Tn1 0.024 0.022 0.034 0.031 0.049 0.044 0.064 0.059
    Tn3 0.021 0.019 0.031 0.026 0.044 0.038 0.059 0.053
    自适应阈值 0.019 0.016 0.029 0.023 0.041 0.035 0.056 0.050
    下载: 导出CSV

    表 3  三种阈值方法的质心偏移估计误差对比

    Table 3.  Comparison of the CEE using three thresholding methods

    阈值方法 5 ms 2 ms 1ms
    ΔxCEE ΔyCEE ΔxCEE ΔyCEE ΔxCEE ΔyCEE
    Tn1 0.121 0.106 0.099 0.072 0.095 0.068
    Tn3 0.066 0.042 0.074 0.046 0.082 0.057
    自适应阈值 0.047 0.030 0.061 0.043 0.076 0.054
    下载: 导出CSV
  • [1]

    Lukin V P, Botygina N N, Emaleev O N, et al. Wavefront sensors for adaptive optical systems[J]. Proceedings of SPIE, 2010, 7828: 78280P. doi: 10.1117/12.865964

    [2]

    Vargas J, González-Fernandez L, Quiroga J A, et al. Shack-Hartmann centroid detection method based on high dynamic range imaging and normalization techniques[J]. Applied Optics, 2010, 49(13): 2409-2416. doi: 10.1364/AO.49.002409

    [3]

    饶长辉, 朱磊, 张兰强, 等.太阳自适应光学技术进展[J].光电工程, 2018, 45(3): 170733. doi: 10.12086/oee.2018.170733

    Rao C H, Zhu L, Zhang L Q, et al. Development of solar adaptive optics[J]. Opto-Electronic Engineering, 2018, 45(3): 170733. doi: 10.12086/oee.2018.170733

    [4]

    姜文汉.自适应光学发展综述[J].光电工程, 2018, 45(3): 170489. doi: 10.12086/oee.2018.170489

    Jiang W H. Overview of adaptive optics development[J]. Opto-Electronic Engineering, 2018, 45(3): 170489. doi: 10.12086/oee.2018.170489

    [5]

    Ares J, Arines J. Effective noise in thresholded intensity distribution: influence on centroid statistics[J]. Optics Letters, 2001, 26(23): 1831-1833. doi: 10.1364/OL.26.001831

    [6]

    沈锋, 姜文汉.提高Hartmann波前传感器质心探测精度的阈值方法[J].光电工程, 1997, 24(3): 1-8. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199700102594

    Shen F, Jiang W H. A method for improving the centroid sensing accuracy threshold of Hartmann wavefront sensor[J]. Opto-Electronic Engineering, 1997, 24(3): 1-8. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199700102594

    [7]

    Ma X Y, Rao C H, Zheng H Q. Error analysis of CCD-based point source centroid computation under the background light[J]. Optics Express, 2009, 17(10): 8525-8541. doi: 10.1364/OE.17.008525

    [8]

    Thomas S, Fusco T, Tokovinin A, et al. Comparison of centroid computation algorithms in a Shack-Hartmann sensor[J]. Monthly Notices of the Royal Astronomical Society, 2006, 371(1): 323-336. doi: 10.1111/j.1365-2966.2006.10661.x

    [9]

    Yin X M, Li X, Zhao L P, et al. Adaptive thresholding and dynamic windowing method for automatic centroid detection of digital Shack-Hartmann wavefront sensor[J]. Applied Optics, 2009, 48(32): 6088-6098. doi: 10.1364/AO.48.006088

    [10]

    Vyas A, Roopashree M B, Prasad B R. Centroid detection by Gaussian pattern matching in adaptive optics[J]. International Journal of Computer Applications, 2010, 1(26): 32-37. doi: 10.5120/ijca

    [11]

    Baker K L, Moallem M M. Iteratively weighted centroiding for Shack-Hartmann wave-front sensors[J]. Optics Express, 2007, 15(8): 5147-5159. doi: 10.1364/OE.15.005147

    [12]

    任剑峰, 饶长辉, 李明全.一种Hartmann-Shack波前传感器图像的自适应阈值选取方法[J].光电工程, 2002, 29(1): 1-5. doi: 10.3969/j.issn.1003-501X.2002.01.001

    Ren J F, Rao C H, Li M Q. An adaptive threshold selection method for Hartmann-Shack wavefront sensor[J]. Opto-Electronic Engineering, 2002, 29(1): 1-5. doi: 10.3969/j.issn.1003-501X.2002.01.001

    [13]

    Li X X, Li X Y, Wang C X. Optimum threshold selection method of centroid computation for Gaussian spot[J]. Proceedings of SPIE, 2015, 9675: 967517. doi: 10.1117/12.2199247

  • 加载中

(7)

(3)

计量
  • 文章访问数:  7427
  • PDF下载数:  3338
  • 施引文献:  0
出版历程
收稿日期:  2017-12-19
修回日期:  2018-04-10
刊出日期:  2018-10-01

目录

/

返回文章
返回