Zou Defeng, Li Xiaohui, Chai Tong. Investigation of the cosine-super Gaussian pulses evolution[J]. Opto-Electronic Engineering, 2018, 45(10): 180096. doi: 10.12086/oee.2018.180096
Citation: Zou Defeng, Li Xiaohui, Chai Tong. Investigation of the cosine-super Gaussian pulses evolution[J]. Opto-Electronic Engineering, 2018, 45(10): 180096. doi: 10.12086/oee.2018.180096

Investigation of the cosine-super Gaussian pulses evolution

    Fund Project: Supported by National Natural Science Foundation of China (61605106), the Open Research Fund of State Key Laboratory of Transient Optics and Photonics, Chinese Academy of Sciences (SKLST201401), and Starting Grants of Shaanxi Normal University (1112010209, 1110010717)
More Information
  • The evolution of cosine-super Gaussian (CSG) pulses propagating in a conventional single mode fiber (SMF) has been proposed. The propagation properties of CSG pulses are numerically studied by using split-step Fourier method, and the effects of initial phase φ0 and order of the pulse m are analyzed. Results show that when φ0 is increased to 80 rad, the first order CSG pulse will be compressed in a relatively long fiber, and then broaden monotonically; the higher order CSG pulses will experience a short compression first, and then broaden monotonically. In addition, the CSG pulses are compared with simple Gaussian pulses and Hyperbolic secant pulses. The results indicate that the Hyperbolic secant pulse broaden fastest; the simple Gaussian pulse broaden secondly; CSG pulses broaden slowest, which is most insensitive to the dispersion of fiber. The research work will pave a way to realize a special pulse in large-capacity, and long-range communications.
  • 加载中
  • [1] Chu Z Z, Liu J, Guo Z N, et al. 2 μm passively Q-switched laser based on black phosphorus[J]. Optical Materials Express, 2016, 6(7): 2374-2379. doi: 10.1364/OME.6.002374

    CrossRef Google Scholar

    [2] Lu S B, Ge Y G, Sun Z B, et al. Ultrafast nonlinear absorption and nonlinear refraction in few-layer oxidized black phosphorus[J]. Photonics Research, 2016, 4(6): 286-292. doi: 10.1364/PRJ.4.000286

    CrossRef Google Scholar

    [3] Yao Y H, Xu C, Zheng Y, et al. Femtosecond laser-induced upconversion luminescence in Rare-Earth ions by nonresonant multiphoton absorption[J]. The Journal of Physical Chemistry A, 2016, 120(28): 5522-5526. doi: 10.1021/acs.jpca.6b04444

    CrossRef Google Scholar

    [4] 赵玉辉, 郑义, 张玉萍, 等.啁啾高斯脉冲在光纤中传输的脉冲展宽研究[J].光电子技术, 2006, 26(3): 177-180, 184. doi: 10.3969/j.issn.1005-488X.2006.03.007

    CrossRef Google Scholar

    Zhao Y H, Zheng Y, Zhang Y P, et al. The study of pulse broadening of Chirped Gaussian pulses in fiber[J]. Optoelectronic Technology, 2006, 26(3): 177-180, 184. doi: 10.3969/j.issn.1005-488X.2006.03.007

    CrossRef Google Scholar

    [5] 王跃, 李永倩, 李晓娟, 等.单模光纤中无初始啁啾超高斯脉冲特性的研究[J].光通信研究, 2015, 41(1): 17-19. doi: 10.13756/j.gtxyj.2015.01.006

    CrossRef Google Scholar

    Wang Y, Li Y Q, Li X J, et al. Research on characteristics of super-Gaussian optical pulses without initial chirps in single-mode fibers[J]. Study on Optical Communications, 2015, 41(1): 17-19. doi: 10.13756/j.gtxyj.2015.01.006

    CrossRef Google Scholar

    [6] 邹其徽, 吕百达.贝塞尔-高斯脉冲光束在色散介质中的时间和光谱特性[J].强激光与粒子束, 2006, 18(3): 368-371.

    Google Scholar

    Zou Q H, Lü B D. Temporal and spectral properties of Bessel-Gauss pulsed beams in dispersive media[J]. High Power Laser and Particle Beams, 2006, 18(3): 368-371.

    Google Scholar

    [7] 刘浩, 王黎, 高晓蓉.余弦-高斯激光脉冲在单模光纤中的色散效应[J].光电工程, 2005, 32(12): 30-33. doi: 10.3969/j.issn.1003-501X.2005.12.008

    CrossRef Google Scholar

    Liu H, Wang L, Gao X R. Dispersion effect of Cos-Gaussian laser pulses in single mode fiber[J]. Opto-Electronic Engineering, 2005, 32(12): 30-33. doi: 10.3969/j.issn.1003-501X.2005.12.008

    CrossRef Google Scholar

    [8] 赵晗, 宋振明, 林俞先.超短艾里脉冲传输过程中色散效应的分析[J].光学学报, 2015, 35(S1): s132001.

    Google Scholar

    Zhao H, Song Z M, Lin Y X. Dispersion effect on Ultrashort Airy Pulse Propagation[J]. Acta Optica Sinica, 2015, 35(S1): s132001.

    Google Scholar

    [9] 尹国路, 娄淑琴.基于对称分步傅里叶法研究光纤中GVD和SPM相互作用[C]//先进光学技术及其应用研讨会论文集(下册), 2009.

    Google Scholar

    Yin G L, Lou S Q. Study of interaction of GVD and SPM in fiber with symmetric split-step Fourier method[C]//Proceedings of the Symposium on Advanced Optical Technology and Applications (Part 2), 2009.

    Google Scholar

    [10] Agrawal G P. 非线性光纤光学原理及应用[M].贾东方, 余震红, 译. 3版.北京: 电子工业出版社, 2002.

    Google Scholar

    Agrawal G P. Nonlinear Fiber Optics & Applications of Nonlinear Fiber Optics[M]. Jia D F, Yu Z H, trans. 3rd ed. Beijing: Publishing House of Electronics Industry, 2002.

    Google Scholar

    [11] Hamza M Y, Saeed S, Sarwar N, et al. Investigations for the evolution behavior of cos-gauss pulse in dispersion dominant regime of single mode optical fiber[J]. Engineering Letters, 2014, 22(2): 83.

    Google Scholar

    [12] 李均, 黄德修, 张新亮.光纤传输模型的数值计算研究[J].光电子技术与信息, 2003, 16(2): 9-12.

    Google Scholar

    Li J, Huang D X, Zhang X L. Numerical analysis of fiber propagation model[J]. Optoelectronic Technology & Information, 2003, 16(2): 9-12.

    Google Scholar

    [13] 赵磊, 隋展, 朱启华, 等.分步傅里叶法求解广义非线性薛定谔方程的改进及精度分析[J].物理学报, 2009, 58(7): 4731-4737. doi: 10.3321/j.issn:1000-3290.2009.07.056

    CrossRef Google Scholar

    Zhao L, Sui Z, Zhu Q H, et al. Improvement and precision analysis of the split-step Fourier method in solving the general nonlinear Schr dinger equation[J]. Acta Physica Sinica, 2001, 58(7): 4731-4737. doi: 10.3321/j.issn:1000-3290.2009.07.056

    CrossRef Google Scholar

    [14] 李莹, 崔庆丰.基于分步傅里叶变换法对非线性薛定谔方程的数值仿真[J].长春理工大学学报(自然科学版), 2011, 34(1): 43-45, 60. doi: 10.3969/j.issn.1672-9870.2011.01.013

    CrossRef Google Scholar

    Li Y, Cui Q F. The numerical simulation to nonlinear Schrodinger equation based on SSFT[J]. Journal of Changchun University of Science and Technology, 2011, 34(1): 43-45, 60. doi: 10.3969/j.issn.1672-9870.2011.01.013

    CrossRef Google Scholar

    [15] 郑宏军, 刘山亮, 黎昕, 等.初始啁啾对双曲正割光脉冲线性传输特性的影响[J].物理学报, 2007, 56(4):2286-2292. doi: 10.3321/j.issn:1000-3290.2007.04.072

    CrossRef Google Scholar

    Zheng H J, Liu S L, Li X, et al. Effect of initial frequency chirp on the linear propagation characteristics of the hyperbolic secant optical pulse[J]. Acta Physica Sinica, 2007, 56(4): 2286-2292. doi: 10.3321/j.issn:1000-3290.2007.04.072

    CrossRef Google Scholar

  • Overview: The evolution of cosine-super Gaussian pulses propagating in a conventional single mode fiber (SMF) has been proposed. The propagation properties of cosine-super Gaussian pulses are numerically studied by using split-step Fourier method, and the effects of initial phase φ0 and order of the pulse m are analyzed because of their decisive roles in the process of pulse propagation. First, we discuss the effects of two parameters φ0 and m on the distributions of the cosine-super Gaussian pulse on the source plane. When the pulse order m is fixed, the optical pulse will be strengthened by the cosine function modulation with the increase of φ0. The sidelobes of the cosine function modulation are gradually appeared on the both sides of the pulse. When initial phase φ0 is fixed, the ability of the cosine-super Gaussian pulse to resist cosine modulation is strengthened, and the cosine modulated sidelobes will not appear. In the actual transmitting process, the pulse with high energy will experience the splitting of the pulse owing to the nonlinear effects in the fiber. The cosine modulated sidelobes of the cosine-super Gaussian pulse will be closer to the actual propagation characteristics of the pulse. After that, the effects of two parameters initial phase φ0 and order of the pulse m propagation process of the cosine-super Gaussian pulse are discussed, respectively. Here the pulse width broaden ratio is defined as that the ratio between the full width at half maximum of output pulse and the input pulse. By observing the pulse width broaden ratio curses, we can see that when φ0 is increased to 80 rad, the first order cosine-super Gaussian pulse will be compressed in a relatively long fiber, and then broaden monotonically; the higher order cosine-super Gaussian pulses will experience a short compression first, and then broaden monotonically. Especially, the third-order cosine-super Gaussian pulse is selected and we find that under the combined effects of the φ0 and m, the initial incident pulse no longer has the sidelobes. The third-order cosine-super Gaussian pulse turns to the multi-model structure from the single peak structure, and experiences the compression at the same time. In addition, the cosine-super Gaussian pulses are compared with simple Gaussian pulses and Hyperbolic secant pulses. The results indicate that the Hyperbolic secant pulses broaden fastest; the simple Gaussian pulses broaden secondly; cosine-super Gaussian pulses broaden slowest, which are most insensitive to the dispersion of fiber. The research work will pave a way to realize a special pulse in large-capacity, and long-range communications.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Article Metrics

Article views(8943) PDF downloads(2928) Cited by(0)

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint