复合二维材料GO-MoS2锁模掺铒光纤激光器

李维炜, 黄义忠, 罗正钱. 复合二维材料GO-MoS2锁模掺铒光纤激光器[J]. 光电工程, 2018, 45(10): 170653. doi: 10.12086/oee.2018.170653
引用本文: 李维炜, 黄义忠, 罗正钱. 复合二维材料GO-MoS2锁模掺铒光纤激光器[J]. 光电工程, 2018, 45(10): 170653. doi: 10.12086/oee.2018.170653
Li Weiwei, Huang Yizhong, Luo Zhengqian. Composite two-dimensional material GO-MoS2-based passively mode-locked Erbium-doped fiber laser[J]. Opto-Electronic Engineering, 2018, 45(10): 170653. doi: 10.12086/oee.2018.170653
Citation: Li Weiwei, Huang Yizhong, Luo Zhengqian. Composite two-dimensional material GO-MoS2-based passively mode-locked Erbium-doped fiber laser[J]. Opto-Electronic Engineering, 2018, 45(10): 170653. doi: 10.12086/oee.2018.170653

复合二维材料GO-MoS2锁模掺铒光纤激光器

  • 基金项目:
    国家自然科学基金(61475129);福建省自然科学基金(2017J06016);深圳市科技计划(JCYJ20160414160109018)资助项目
详细信息
    作者简介:
    通讯作者: 罗正钱(1982-),男,博士,教授,主要从事超快光纤激光技术及片上集成光子器件的研究。E-mail:zqluo@xmu.edu.cn
  • 中图分类号: O436.3

Composite two-dimensional material GO-MoS2-based passively mode-locked Erbium-doped fiber laser

  • Fund Project: Supported by the National Natural Science Foundation of China (61475129), Natural Science Foundation of Fujian Province of China (2017J06016), and Shenzhen Science and Technology Projects (JCYJ20160414160109018)
More Information
  • 为了提升MoS2可饱和吸收体在脉冲激光器中的稳定性和工作性能,本论文采用氧化石墨烯(GO)作为胶体表面活性剂,通过LPE的方法剥离出少层MoS2,并进一步开展了少层GO-MoS2用于掺铒光纤激光器(EDFL)锁模的实验研究。在实验中获得了中心波长为1558 nm,重复频率为7.86 MHz,脉宽为1.9 ps的稳定锁模脉冲激光。当泵浦功率为60.5 mW时,输出功率为0.48 mW,脉冲峰值功率为32.1 W。研究证明,采用这种方法制备的新型复合二维材料有利于保持少层MoS2的稳定性,并且能提高MoS2可饱和吸收体的损伤阈值,以获取更大脉冲能量的超快激光。

  • Overview: In recent years, mode-locked fiber lasers have attracted extensive attention owing to their wide applications, such as material processing, optical communications, medicine, range finding and scientific research. This is because of their unique and outstanding advantages such as high peak power, narrow pulse width, compactness, low cost, high beam quality and ease of maintenance. Compared to active mode-locked fiber lasers which require a built-in amplitude modulator in the cavity, passive mode-locked fiber lasers using saturable absorbers (SA) as an intensity modulator have become a hotspot due to their simpler structure and abundant mode-locked phenomena. Traditional saturable absorbers include metal doped crystals, SESAMs and carbon nanotubes. For fiber lasers utilizing metal doped crystals or SESAMs, it is difficult to achieve an all-fiber structure, and they are also usually costly. The carbon nanotubes are relatively simple to fabricate and also easy to be integrated optically, but they only operate in a relatively narrow band. Until 2004, Novoselovks et al. of the University of Manchester successfully fabricated few layers and single layer of graphene by mechanically stripping graphite. Since graphene was discovered, the two-dimensional materials have been used as SAs in fiber lasers. In addition to graphene, there is an endless stream of research on topological insulators, transition metal dichalcogenides, black phosphorus and so on. Among them, the transition metal dichalcogenides represented by MoS2 is a newly developed two-dimensional nanomaterial. The monolayer of MoS2 consists of three atomic layers with a layer of molybdenum atoms sandwiched by two layers of sulfur atoms, which has good thermal and chemical stability. Furthermore, few-layer MoS2 had been ambiguously verified to exhibit enhanced optical saturable absorption and can possess the stronger light-matter interaction. In this paper, for improving the performance and stability of MoS2 saturable absorber, graphene oxide (GO) as colloidal surfactant is used to exfoliate MoS2 bulk material for obtaining few-layer GO-MoS2 nano-flakes. Further research on few-layer GO-MoS2 saturable absorber to mode-lock erbium-doped fiber laser (EDFL) is then conducted. In the experiment, a stable mode-locked pulsed laser is achieved with a center wavelength of 1558 nm, a repetition rate of 7.86 MHz and a pulse width of 1.9 ps. When the pump power reaches 60.5 mW, the output power is 0.48 mW and the pulse peak power is calculated to be 32.1 W. This work shows that the new composite 2D material prepared by this method is beneficial to maintain the stability of few-layer MoS2 and increase the damage threshold of the MoS2 saturable absorber for passive mode-locking.

  • 加载中
  • 图 1  (a) GO的AFM图;(b) GO-MoS2的AFM图;(c) GO高度图;(d) GO-MoS2高度图;(e) GO-MoS2 XRD图;(f) GO-MoS2拉曼图

    Figure 1.  (a) The AFM image of GO; (b) The AFM image of GO-MoS2; (c) The height image of GO; (d) The height image of GO-MoS2; (e) The XRD image of GO-MoS2; (f) The Raman image of GO-MoS2

    图 2  PVA-GO、PVA-MoS2和PVA-GO-MoS2的可饱和吸收特性

    Figure 2.  The saturable absorption characteristics of PVA-GO, PVA-MoS2 and PVA-GO-MoS2

    图 3  GO-MoS2锁模EDFL结构图

    Figure 3.  The structure of GO-MoS2-based EDFL

    图 4  GO-MoS2锁模EDFL特征。(a)光谱;(b)脉冲序列;(c)自相关迹;(d)频谱

    Figure 4.  The mode-locking characteristics of GO-MoS2-based EDFL. (a) Optical spectrum; (b) Pulse sequence; (c) Autocorrelation trace; (d) RF spectrum

  • [1]

    Sugioka K, Cheng Y. Ultrafast lasers—reliable tools for advanced materials processing[J]. Light: Science & Applications, 2014, 3(4): e149. http://cnoptics.net/handle/181231/13174

    [2]

    Nguyen Q T, Besnard P, Bramerie L, et al. Bidirectional 2.5-Gb/s WDM-PON using FP-LDs wavelength-locked by a multiple-wavelength seeding source based on a mode-locked laser[J]. IEEE Photonics Technology Letters, 2010, 22(11): 733–735. doi: 10.1109/LPT.2010.2044569

    [3]

    Richardson D J, Nilsson J, Clarkson W A. High power fiber lasers: current status and future perspectives[J]. Journal of the Optical Society of America B, 2010, 27(11): B63–B92. doi: 10.1364/JOSAB.27.000B63

    [4]

    El-Sherif A F, King T A. High-energy, high-brightness Q-switched Tm3+-doped fiber laser using an electro-optic modulator[J]. Optics Communications, 2003, 218(4–6): 337–344. doi: 10.1016/S0030-4018(03)01200-8

    [5]

    Shi W, Fang Q, Zhu X S, et al. Fiber lasers and their applications[J]. Applied Optics, 2014, 53(28): 6554–6568. doi: 10.1364/AO.53.006554

    [6]

    Du T J, Luo Z Q, Yang R H, et al. 1.2-W average-power, 700-W peak-power, 100-ps dissipative soliton resonance in a compact Er:Yb co-doped double-clad fiber laser[J]. Optics Letters, 2017, 42(3): 462–465. doi: 10.1364/OL.42.000462

    [7]

    Ryu H Y, Moon H S, Suh H S. Optical frequency comb generator based on actively mode-locked fiber ring laser using an acousto-optic modulator with injection-seeding[J]. Optics Express, 2007, 15(18): 11396–11401. doi: 10.1364/OE.15.011396

    [8]

    Hudson D D, Holman K W, Jones R J, et al. Mode-locked fiber laser frequency-controlled with an intracavity electro-optic modulator[J]. Optics Letters, 2005, 30(21): 2948–2950. doi: 10.1364/OL.30.002948

    [9]

    Luo Z Q, Wu D D, Xu B, et al. Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers[J]. Nanoscale, 2016, 8(2): 1066–1072. doi: 10.1039/C5NR06981E

    [10]

    Laroche M, Gilles H, Girard S, et al. Nanosecond pulse generation in a passively Q-switched Yb-doped fiber laser by Cr4+:YAG saturable absorber[J]. IEEE Photonics Technology Letters, 2006, 18(6): 764–766. doi: 10.1109/LPT.2006.871678

    [11]

    Keller U. Recent developments in compact ultrafast lasers[J]. Nature, 2003, 424(6950): 831–838. doi: 10.1038/nature01938

    [12]

    Zhou D P, Wei L, Dong B, et al. Tunable passively Q-switched erbium-doped fiber laser with carbon nanotubes as a saturable absorber[J]. IEEE Photonics Technology Letters, 2010, 22(1): 9–11. doi: 10.1109/LPT.2009.2035325

    [13]

    Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666–669. doi: 10.1126/science.1102896

    [14]

    Luo Z Q, Zhou M, Weng J, et al. Graphene-based passively Q-switched dual-wavelength erbium-doped fiber laser[J]. Optics Letters, 2010, 35(21): 3709–3711. doi: 10.1364/OL.35.003709

    [15]

    Popa D, Sun Z, Hasan T, et al. Graphene Q-switched, tunable fiber laser[J]. Applied Physics Letters, 2011, 98(7): 073106. doi: 10.1063/1.3552684

    [16]

    Luo Z Q, Huang Y Z, Weng J, et al. 1.06 μm Q-switched ytterbium-doped fiber laser using few-layer topological insulator Bi2Se3 as a saturable absorber[J]. Optics Express, 2013, 21(24): 29516–29522. doi: 10.1364/OE.21.029516

    [17]

    Luo Z Q, Liu C, Huang Y Z, et al. Topological-insulator passively Q-switched double-clad fiber laser at 2 μm wavelength[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(5): 0902708.

    [18]

    Luo Z Q, Huang Y Z, Zhong M, et al. 1-, 1.5-, and 2-μm fiber lasers Q-switched by a broadband few-layer MoS2 saturable absorber[J]. Journal of Lightwave Technology, 2014, 32(24): 4077–4084. doi: 10.1109/JLT.2014.2362147

    [19]

    Woodward R I, Kelleher E J R, Howe R C T, et al. Tunable Q-switched fiber laser based on saturable edge-state absorption in few-layer molybdenum disulfide (MoS2)[J]. Optics Express, 2014, 22(25): 31113–31122. doi: 10.1364/OE.22.031113

    [20]

    Chen Y, Jiang G B, Chen S Q, et al. Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and Mode-locking laser operation[J]. Optics Express, 2015, 23(10): 12823–12833. doi: 10.1364/OE.23.012823

    [21]

    Zheng Z W, Zhao C J, Lu S B, et al. Microwave and optical saturable absorption in graphene[J]. Optics Express, 2012, 20(21): 23201–23214. doi: 10.1364/OE.20.023201

    [22]

    Wang S X, Yu H H, Zhang H J, et al. Broadband few-layer MoS2 saturable absorbers[J]. Advanced Materials, 2014, 26(21): 3538–3544. doi: 10.1002/adma.v26.21

    [23]

    Huang Y Z, Luo Z Q, Li Y Y, et al. Widely-tunable, passively Q-switched erbium-doped fiber laser with few-layer MoS2 saturable absorber[J]. Optics Express, 2014, 22(21): 25258–25266. doi: 10.1364/OE.22.025258

    [24]

    Wang K P, Wang J, Fan J T, et al. Ultrafast saturable absorption of two-dimensional MoS2 nanosheets[J]. ACS Nano, 2013, 7(10): 9260–9267. doi: 10.1021/nn403886t

    [25]

    Xia H D, Li H P, Lan C Y, et al. Ultrafast erbium-doped fiber laser mode-locked by a CVD-grown molybdenum disulfide (MoS2) saturable absorber[J]. Optics Express, 2014, 22(14): 17341–17348. doi: 10.1364/OE.22.017341

    [26]

    Liu H, Luo A P, Wang F Z, et al. Femtosecond pulse erbium-doped fiber laser by a few-layer MoS2 saturable absorber[J].Optics Letters, 2014, 39(15): 4591–4594. doi: 10.1364/OL.39.004591

    [27]

    Liu M, Zheng X W, Qi Y L, et al. Microfiber-based few-layer MoS2 saturable absorber for 2.5 GHz passively harmonic mode-locked fiber laser[J]. Optics Express, 2014, 22(19): 22841–22846. doi: 10.1364/OE.22.022841

    [28]

    Xu H, Wu J X, Feng Q L, et al. High responsivity and gate tunable graphene-MoS2 hybrid phototransistor[J]. Small, 2014, 10(11): 2300–2306. doi: 10.1002/smll.201303670

    [29]

    Mueller T, Xia F N, Avouris P. Graphene photodetectors for high-speed optical communications[J]. Nature Photonics, 2010, 4(5): 297–301. doi: 10.1038/nphoton.2010.40

    [30]

    Peng J, Weng J. One-pot solution-phase preparation of a MoS2/graphene oxide hybrid[J]. Carbon, 2015, 94: 568–576. doi: 10.1016/j.carbon.2015.07.035

  • 加载中

(4)

计量
  • 文章访问数:  8163
  • PDF下载数:  3058
  • 施引文献:  0
出版历程
收稿日期:  2017-11-30
修回日期:  2018-01-23
刊出日期:  2018-10-01

目录

/

返回文章
返回