胶体光子晶体修饰光纤及相对湿度检测应用

潘超, 周俊萍, 倪海彬. 胶体光子晶体修饰光纤及相对湿度检测应用[J]. 光电工程, 2018, 45(9): 180168. doi: 10.12086/oee.2018.180168
引用本文: 潘超, 周俊萍, 倪海彬. 胶体光子晶体修饰光纤及相对湿度检测应用[J]. 光电工程, 2018, 45(9): 180168. doi: 10.12086/oee.2018.180168
Pan Chao, Zhou Junping, Ni Haibin. Colloidal photonic crystal modified optical fiber and relative humidity detection application[J]. Opto-Electronic Engineering, 2018, 45(9): 180168. doi: 10.12086/oee.2018.180168
Citation: Pan Chao, Zhou Junping, Ni Haibin. Colloidal photonic crystal modified optical fiber and relative humidity detection application[J]. Opto-Electronic Engineering, 2018, 45(9): 180168. doi: 10.12086/oee.2018.180168

胶体光子晶体修饰光纤及相对湿度检测应用

  • 基金项目:
    国家自然科学基金资助项目(61605082);江苏省自然科学基金资助项目(BK20160969);江苏省高校基金资助项目(16KJB510020);江苏省高等教育重点学科建设项目资助项目(PAPD);国家博士后基金资助项目(2017M611654);江苏省博士后基金资助项目(1701074B);南信大人才启动基金资助项目(2015r040);江苏省气象观测与信息处理重点实验室开放项目资助项目(KDXS1506)
详细信息
    作者简介:
    通讯作者: 倪海彬(1988-),男,博士,讲师,主要从事光纤传感,纳米光电传感的研究。E-mail:nihaibin@nuist.edu.cn
  • 中图分类号: O734;TN253

Colloidal photonic crystal modified optical fiber and relative humidity detection application

  • Fund Project: Supported by National Natural Science Foundation of China (61605082), the Natural Science Foundation of Jiangsu Province (BK20160969), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (16KJB510020), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), China Postdoctoral Science Foundation Funded Project (2017M611654), Jiangsu Postdoctoral Science Foundation Funded Project (1701074B), the Startup Foundation for Introducing Talent of NUIST (2015r040), and Open Project of Jiangsu Key Laboratory of Meteorological Observation and Information Processing (KDXS1506)
More Information
  • 本文提出了一种用胶体光子晶体来装饰单模光纤装饰端面的方法,并说明了这种结构用于相对湿度传感器的原理。研究了用垂直沉积法在光纤端面制备PS(polystyrene)胶体晶体、复合胶体晶体和SiO2反蛋白石(inverse opal)的技术,用扫描电子显微镜表征了制备得到的胶体晶体及反蛋白石,测量了端面被胶体晶体修饰光纤的反射光谱,并测试了光纤端面复合光子晶体的相对湿度传感特性。提出了一种毛细管-光纤结构,提高了生长在光纤端面处胶体晶体的质量和其机械稳定性。

  • Overview: Photonic crystals have been widely used in sensing, information processing and optical devices since they can manipulate light in the wavelength scale by periodic refractive index distributions, which can also be called optical band gaps. In addition, optical fibers are flexible miniature optical waveguides. Therefore, the combination of photonic crystals and optical fibers could form a miniature sensing platform on fiber, named lab on fiber. In this paper, self-assembly method was applied to fabricated colloidal photonic crystals on optical fiber end facets. Polystyrene opal film, silica inverse opal film and composite opal film are successfully produced on a single optical fiber end facet. Film quality was characterized by SEM and reflection spectra through the other end of optical fiber. Cracks and limited layers of colloidal photonic crystals were observed on the single optical fiber end facet. To increase the photonic crystal film quality, an optimized structure, a capillary ferruled on one end of the fiber and a formed large flat surface, was employed in the fabrication process. As a result, high quality colloidal photonic crystal on the fiber end facet was obtained which is confirmed by optical reflection spectra. Moreover, the produce film stick more firmly on the fiber end facet compared to that on a single optical fiber. Principles of the colloidal photonic crystal film as sensing materials are discussed. Bragg reflection as well as effective refractive index theory was employed to describe the band gap shift of colloidal photonic crystal. A relatively large effective refractive index change or large lattice distance, or both of them will results in a large sensitivity of the colloidal photonic crystal.

    Composite photonic crystal on fiber end facet as relative humidity sensor are demonstrated. The sensing mechanism is that silica gel infiltrated in polystyrene spheres can absorb water molecular in high relative humidity, and the water in the silica gel network will evaporate when relative humidity decrease. As a result, the fabricated composite photonic crystal film is sensitive to relative humidity in a range from 12%~86%. A sensitivity of 0.133 nm for reflectance peak at 900 nm wavelength is experimentally demonstrated. When the relative humidity is larger than 86%, reflectance peak of the composite photonic crystal film does not shift obviously due to a saturated absorption of water of the silica gel. As a conclusion, colloidal photonic crystal on optical fiber end facet can be fabricated and could form a platform for optical sensing or analyzing.

  • 加载中
  • 图 1  光纤端面生长胶体晶体的示意图

    Figure 1.  Schematic diagram of the growth of colloidal crystals on the fiber end face

    图 2  光纤-毛细管结构。(a)光纤-毛细管侧面;(b)光纤-毛细管正面(端面)

    Figure 2.  Schematic diagram of fiber-capillary structure. (a) Side view; (b) Front view

    图 3  端面由胶体晶体修饰的光纤的反射光谱测量示意图

    Figure 3.  Schematic diagram of reflection spectra measurement set up for colloidal crystal decorated optical fibers

    图 4  扫描电子显微镜下PS照片。(a)~(b)光纤端面的PS胶体晶体SEM照片;(c)~(d)光纤-毛细管端面的PS胶体晶体SEM照片

    Figure 4.  SEM images of PS colloidal crystals. (a)~(b) SEM images of PS colloidal crystals on a single optical fiber end facet; (c)~(d) SEM images of PS colloidal crystals on a fiber-capillary structure end facet

    图 5  光纤和光纤-毛细管端面胶体晶体的反射光谱

    Figure 5.  Reflection spectra of PS colloidal crystals prepared on single mode optical fiber (blue line) and fiber-capillary end facet (red line)

    图 6  SiO2反蛋白石SEM照片。(a)~(b)光纤端面的SiO2反蛋白石SEM照片;(c)~(d)光纤-毛细管端面的SiO2反蛋白石SEM照片;(e)~(f)复合光子晶体修饰的光纤端面

    Figure 6.  SEM images of SiO2 Inverse Opal. (a)~(b) SEM images of SiO2 Inverse Opal on a single optical fiber end facet; (c)~(d) SEM images of SiO2 Inverse Opal on fiber-capillary structure; (e)~(f) SEM images of composite photonic crystals on a single optical fiber end facet

    图 7  相对湿度检测。(a)复合光子晶体在不同相对湿度下光纤端面的反射谱;(b)反射峰和湿度的对应关系

    Figure 7.  Relative humidity detection. (a) Reflection spectra of composite photonic crystals on fiber end facet in varied relative humidity; (b) Reflectance peak wavelength vs. relative humidity

  • [1]

    Guo W H, Wang M, Yu P, et al. Fabrication of 3D colloidal photonic crystals in cavity of optical fiber end face[J]. Chinese Optics Letters, 2010, 8(5): 515-516. doi: 10.3788/COL

    [2]

    Feng Pan F, Deng Y T, Ma X C, et al. Measurement of spatial refractive index distributions of fusion spliced optical fibers by digital holographic microtomography[J]. Optics Communications, 2017, 403: 370-375. doi: 10.1016/j.optcom.2017.05.045

    [3]

    Benjamin Hatton B, Mishchenko L, Davis S, et al. Assembly of large-area, highly ordered, crack-free inverse opal films[J]. PNAS, 2010, 107(23): 10354-10359. doi: 10.1073/pnas.1000954107

    [4]

    Anusha Ekbote A, Patil P S, Shivaraj R, et al. Structural, third-order optical nonlinearities and figures of merit of (E)-1-(3-substituted phenyl)-3-(4-fluorophenyl) prop-2-en-1-one under CW regime: New chalcone derivatives for optical limiting applications[J]. Dyes and Pigments, 2017, 139: 720-729. doi: 10.1016/j.dyepig.2017.01.002

    [5]

    Chen C M, Xu J, Yao Y. Fabrication of miniaturized CSRR-loaded HMSIW humidity sensors with high sensitivity and ultra-low humidity hysteresis[J]. Sensors and Actuators B: Chemical, 2018, 256: 1100-1106. doi: 10.1016/j.snb.2017.10.057

    [6]

    Gomez D, Morgan S P, Hayes-Gill B R, et al. Polymeric optical fibre sensor coated by SiO2 nanoparticles for humidity sensing in the skin microenvironment[J]. Sensors and Actuators B: Chemical, 2018, 254: 887-895. doi: 10.1016/j.snb.2017.07.191

    [7]

    包立峰, 董新永, 沈常宇.基于氧化石墨烯的干涉型光纤湿度传感器[J].中国计量大学学报, 2018, 29(1): 75-80. doi: 10.3969/j.issn.2096-2835.2018.01.014

    Bao L F, Dong X Y, Shen C Y. Interferometric optic fiber humidity sensors based on graphene oxides[J]. Journal of China University of Metrology, 2018, 29(1): 75-80. doi: 10.3969/j.issn.2096-2835.2018.01.014

    [8]

    程君妮.基于光纤锥和纤芯失配的Mach-Zehnder干涉湿度传感器[J].物理学报, 2018, 67(2): 024212. doi: 10.7498/aps.67.20171677

    Cheng J N. Mach-Zehnder interferometer based on fiber taper and fiber core mismatch for humidity sensing[J]. Acta Physica Sinica, 2018, 67(2): 024212. doi: 10.7498/aps.67.20171677

    [9]

    邵敏, 乔学光, 傅海威, 等.光纤布拉格光栅嵌入SMS光纤结构的湿度传感器[J].光谱学与光谱分析, 2016, 36(9): 3008-3013. doi: 10.3964/j.issn.1000-0593(2016)09-3008-06

    Shao M, Qiao X G, Fu H W, et al. Fiber humidity sensor based on fiber Bragg grating sandwiched in SMS fiber structure[J]. Spectroscopy and Spectral Analysis, 2016, 36(9): 3008-3013. doi: 10.3964/j.issn.1000-0593(2016)09-3008-06

    [10]

    Mendoza C, Gonzalez, Gordo E, et al. Protective nature of nano-TiN coatings shaped by EPD on Ti substrates[J]. Journal of the European Ceramic Society, 2018, 38(2): 495-900. doi: 10.1016/j.jeurceramsoc.2017.09.046

    [11]

    Zhou Z C, Zhao X S. Flow-controlled vertical deposition method for the fabrication of photonic crystals[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2004, 20(4): 1524-1526. doi: 10.1021/la035686y

    [12]

    Wang S C, Xu S S, Wang Y M, et al. Synthesis, crystals of centrosymmetric triphenylamine chromophores bearing prodigious two-photon absorption cross-section and biological imaging[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2017, 173: 871-879. doi: 10.1016/j.saa.2016.10.059

    [13]

    Pettinari G, Gerardino A, Businaro L, et al. A lithographic approach for quantum dot-photonic crystal nanocavity coupling in dilute nitrides[J]. Microelectronic Engineering, 2017, 174: 16-19. doi: 10.1016/j.mee.2016.12.003

  • 加载中

(7)

计量
  • 文章访问数:  7504
  • PDF下载数:  3797
  • 施引文献:  0
出版历程
收稿日期:  2018-02-09
修回日期:  2018-05-03
刊出日期:  2018-09-01

目录

/

返回文章
返回