光纤声传感器综述

高椿明, 聂峰, 张萍, 等. 光纤声传感器综述[J]. 光电工程, 2018, 45(9): 180050. doi: 10.12086/oee.2018.180050
引用本文: 高椿明, 聂峰, 张萍, 等. 光纤声传感器综述[J]. 光电工程, 2018, 45(9): 180050. doi: 10.12086/oee.2018.180050
Gao Chunming, Nie Feng, Zhang Ping, et al. Optical fiber acoustic sensors[J]. Opto-Electronic Engineering, 2018, 45(9): 180050. doi: 10.12086/oee.2018.180050
Citation: Gao Chunming, Nie Feng, Zhang Ping, et al. Optical fiber acoustic sensors[J]. Opto-Electronic Engineering, 2018, 45(9): 180050. doi: 10.12086/oee.2018.180050

光纤声传感器综述

  • 基金项目:
    国家自然科学基金资助项目(61379013);国家重点研发计划资助项目(2017YFB1103002);四川省科技计划项目(2016GZ0002)
详细信息
    通讯作者: 高椿明(1973-),男,博士,教授,主要从事光声感知技术的研究。E-mail:gaocm@uestc.edu.cn
  • 中图分类号: TP212;TN253

Optical fiber acoustic sensors

  • Fund Project: Supported by National Natural Science Found of China (61379013), National Key R & D Plan (2017YFB1103002) and Sichuan Science and Technology Project (2016GZ0002)
More Information
  • 光纤声传感器是一种利用光纤作为传光介质或探测单元的一类声传感器,相比传统电声传感器其具有灵敏度高、频带响应宽、抗电磁干扰等优越特性,可广泛应用于国防安全、工业无损检测、医疗诊断及消费电子等领域。按照声场与光的耦合方式,把光纤声传感器分为间接耦合型和直接耦合型两种,其中,间接耦合型光纤声传感器受声耦合材料频响特性限制,存在频响不平坦、带宽较窄及动态范围小等缺点;而直接耦合型光纤声传感器克服了上述的缺点,具有广阔的发展潜力。

  • Overview: Sound wave as the carrier of information and energy is the natural phenomena which has been paid attention to study for the first time. With the rapid development of information technology, the detection of acoustic signals with high sensitivity and large bandwidth becomes more and more important. In recent years, the research focus of acoustic sensors has been developed from electro-acoustic sensing technology to photoacoustic sensing technology. Optical fiber sensing technology was developed rapidly in the 70 s of last century. Due to the high precision of light detection and the advantages of fiber working frequency band and small transmission loss, optical fiber acoustic sensor features high sensitivity, broad-band frequency response, high signal to noise ratio and high dynamic range compared with space optical microphones and traditional electroacoustic sensors. Furthermore, because of its immune electromagnetic interference and miniaturization, it can be used in environments with high temperature, high pressure, strong corrosion and strong radiation that traditional electroacoustic sensors can not work normally. Therefore, optical fiber acoustic sensor has been valued and widely used in the national security, industrial non-destructive testing, medical diagnostics, consumer electronics etc. In this paper, from the perspective of the frequency response curve of optical fiber acoustic sensors, optical fiber acoustic sensors are classified as indirect and direct coupling types by introducing a new classification method based on whether acoustic coupling materials are used or not.

    As shown in the figure above, indirect coupling type, including light intensity modulation, phase modulation and wavelength modulation, present some problems such as uneven frequency response, narrower bandwidth, and smaller dynamic range due to the frequency response features of the acoustic coupling materials. While direct coupling type, including the self-coupling effect and Fabry-Perot etalon (FPE) optical fiber sensors, have overcome these shortcomings and thus have very good linear frequency response characteristics, large bandwidth and large dynamic range. Direct coupling optical fiber acoustic sensor technology has got rid of limitations from acoustic coupling materials by using direct coupling of light and sound field, especially FPE optical fiber sensing technology can make full use of light multi-reflection characteristic of the cavity to further enhance the detection sensitivity, which is a new technology with great development value.

  • 加载中
  • 图 1  光强调制型光纤声传感器。(a)弯曲波导型[2, 8];(b)耦合波导型[9-10];(c)悬臂型[11-13];(d)反射型[14-15];(e)移动闸门型[8, 16]

    Figure 1.  Optical fiber sensors with light intensity modulation. (a) Bending waveguide[2, 8]; (b) Coupling waveguide[9-10]; (c) Cantilever[11-13]; (d) Reflective membrane[14-15]; (e) Moving gate[8, 16]

    图 2  相位调制型光纤声传感器。(a)马赫-曾德尔干涉仪型;(b)迈克尔逊干涉仪型;(c)萨格奈克干涉仪型;(d)法布里-珀罗干涉仪型

    Figure 2.  Optical fiber acoustic sensors with phase modulation. (a) MZI; (b) MI; (c) SI; (d) FPI

    图 3  (a) 波长调制型光纤声传感器[4];(b)光纤布拉格光栅[43]

    Figure 3.  (a) Optical fiber acoustic sensors with wavelength modulation[4]; (b) Fiber Bragg grating[43]

    图 4  半导体激光器自耦合效应声探测原理[46]

    Figure 4.  Sound detection principle using self-coupling effect of semiconductor laser[46]

    图 5  (a) 法布里-珀罗标准具声传感原理[47];(b)声压灵敏度曲线[47]

    Figure 5.  (a) Acoustic sensing principle of Fabry-Perot etalon[47]; (b) Sensitivity of sound pressure[47]

    图 6  (a) 法布里-珀罗标准具光纤声传感原理[49];(b)微型化声传感探头[49]

    Figure 6.  (a) Optical fiber acoustic sensing principle of Fabry-Perot etalon[49]; (b) Miniature acoustic sensing probe[49]

    图 7  光纤声传感器性能对比

    Figure 7.  Comparison of optical fiber acoustic sensors

    表 1  光强调制型光纤声传感器原理及性能参数

    Table 1.  Comparison among optical fiber acoustic sensors with light intensity modulation

    传感器类型 基本原理 信噪比/dB 灵敏度
    /(mV·Pa-1)
    响应带宽/kHz 测试环境
    弯曲波导型[2, 8] 外界扰动光纤中的微弯曲损耗 34 0.56 1.5
    耦合波导型[9-10] 二根光纤熔锥耦合区域耦合率改变光强 44 5.6 30
    悬臂型[11-13] 微扰光纤相对另一根固定光纤移动 32 0.73 10
    反射型[14-15] 膜位置曲率变化调制光纤反射接收光强 63 80 10 空气
    移动闸门型[8, 16] 膜上固定一个闸门阻隔光纤传输光通量 63 100 15 空气
    下载: 导出CSV

    表 2  相位调制型光纤声传感器性能对比

    Table 2.  Comparison among optical fiber acoustic sensors with phase modulation

    传感器类型 信噪比/dB 最小探测灵敏度/(μPa·Hz-1/2) 响应带宽/MHz
    MZI型[19, 23] 43 14.5 5
    MI型[4, 26-27] 43 650.8 3.5
    SI型[7, 28-29] 45 450 6
    FPI型[32, 35] 62 10.2 25
    下载: 导出CSV
  • [1]

    Bell A G. Upon the production and reproduction of sound by light[J]. Journal of the Society of Telegraph Engineers, 1880, 9(34): 404-426. doi: 10.1049/jste-1.1880.0046

    [2]

    Bucaro J A, Dardy H D, Carome E F. Fiber-optic hydrophone[J]. The Journal of the Acoustical Society of America, 1977, 62(5): 1302-1304. doi: 10.1121/1.381624

    [3]

    Culshaw B, Davies D E N, Kingsley S A. Acoustic sensitivity of optical-fibre waveguides[J]. Electronics Letters, 1977, 13(25): 760-761. doi: 10.1049/el:19770537

    [4]

    Wild G, Hinckley S. Acousto-ultrasonic optical fiber sensors: Overview and state-of-the-art[J]. IEEE Sensors Journal, 2008, 8(7): 1184-1193. doi: 10.1109/JSEN.2008.926894

    [5]

    Fischer B. Optical microphone hears ultrasound[J]. Nature Photonics, 2016, 10(6): 356-358. doi: 10.1038/nphoton.2016.95

    [6]

    Preisser S, Rohringer W, Liu M Y, et al. All-optical highly sensitive akinetic sensor for ultrasound detection and photoacoustic imaging[J]. Biomedical Optics Express, 2016, 7(10): 4171-4186. doi: 10.1364/BOE.7.004171

    [7]

    乔学光, 邵志华, 包维佳, 等.光纤超声传感器及应用研究进展[J].物理学报, 2017, 66(7): 074205. doi: 10.7498/aps.66.074205

    Qiao X G, Shao Z H, Bao W J, et al. Fiber-optic ultrasonic sensors and applications[J]. Acta Physica Sinica, 2017, 66(7): 074205. doi: 10.7498/aps.66.074205

    [8]

    Bilaniuk N. Optical microphone transduction techniques[J]. Applied Acoustics, 1997, 50(1): 35-63. doi: 10.1016/S0003-682X(96)00034-5

    [9]

    Chen R, Fernando G F, Butler T, et al. A novel ultrasound fibre optic sensor based on a fused-tapered optical fibre coupler[J]. Measurement Science and Technology, 2004, 15(8): 1490-1495. doi: 10.1088/0957-0233/15/8/010

    [10]

    Li F M, Liu Y Y, Wang L J, et al. Investigation on the response of fused taper couplers to ultrasonic wave[J]. Applied Optics, 2015, 54(23): 6986-6993. doi: 10.1364/AO.54.006986

    [11]

    Spillman S W, Jr, Gravel R L. Moving fiber-optic hydrophone[J]. Optics Letters, 1980, 5(1): 30-31. doi: 10.1364/OL.5.000030

    [12]

    Spillman S W, Jr, McMahon D H. Frustrated-total-internal-reflection multimode fiber-optic hydrophone[J]. Applied Optics, 1980, 19(1): 113-117. doi: 10.1364/AO.19.000113

    [13]

    Rines G A. Fiber-optic accelerometer with hydrophone applications[J]. Applied Optics, 1981, 20(19): 3453-3459. doi: 10.1364/AO.20.003453

    [14]

    于洪峰, 王伟, 王世宁, 等.一种基于感声波纹结构的光学式声传感器[J].传感器与微系统, 2014, 33(9): 68-70, 73. doi: 10.13873/J.1000-9787(2014)09-0068-03

    Yu H F, Wang W, Wang S N, et al. An optical acoustic sensor based on acoustics-sensitive corrugated configuration[J]. Transducer and Microsystem Technologies, 2014, 33(9): 68-70, 73. doi: 10.13873/J.1000-9787(2014)09-0068-03

    [15]

    Nessaiver M S, Stone M, Vijay Parthasarathy M S, et al. Recording high quality speech during tagged cine‐MRI studies using a fiber optic microphone[J]. Journal of Magnetic Resonance Imaging, 2006, 23(1): 92-97. doi: 10.1002/jmri.v23:1

    [16]

    Optoacoustics. Optimic 1140 - Indoor monitoring applications[EB/OL]. 2007. http://www.optoacoustics.com/industrial/optimic-microphones/optimic-1140.

    [17]

    Bucaro J A, Dardy H D, Carome E F. Optical fiber acoustic sensor[J]. Applied Optics, 1977, 16(7): 1761-1762. doi: 10.1364/AO.16.001761

    [18]

    Wen H, Wiesler D G, Tveten A, et al. High-sensitivity fiber-optic ultrasound sensors for medical imaging applications[J]. Ultrasonic Imaging, 1998, 20(2): 103-112. doi: 10.1177/016173469802000202

    [19]

    Gallego D, Lamela H. High-sensitivity ultrasound interferometric single-mode polymer optical fiber sensors for biomedical applications[J]. Optics Letters, 2009, 34(12): 1807-1809. doi: 10.1364/OL.34.001807

    [20]

    Shajenko P. Multimode optical fibers as sensing devices[J]. Applied Optics, 1982, 21(23): 4185-4186. doi: 10.1364/AO.21.004185

    [21]

    Lagakos N, Schnaus E U, Cole J H, et al. Optimizing fiber coatings for interferometric acoustic sensors[J]. IEEE Journal of Quantum Electronics, 1982, 18(4): 683-689. doi: 10.1109/JQE.1982.1071565

    [22]

    Hocker G B. Fiber-optic acoustic sensors with increased sensitivity by use of composite structures[J]. Optics Letters, 1979, 4(10): 320-321. doi: 10.1364/OL.4.000320

    [23]

    Xu F, Shi J H, Gong K, et al. Fiber-optic acoustic pressure sensor based on large-area nanolayer silver diaghragm[J]. Optics Letters, 2014, 39(10): 2838-2840. doi: 10.1364/OL.39.002838

    [24]

    Imai M, Ohashi T, Ohtsuka Y. Fiber-optic Michelson interferometer using an optical power divider[J]. Optics Letters, 1980, 5(10): 418-420. doi: 10.1364/OL.5.000418

    [25]

    Udd E. Fiber-optic acoustic sensor based on the Sagnac interferometer[J]. Proceedings of SPIE, 1983, 425: 90-95. doi: 10.1117/12.936219

    [26]

    Zhang X L, Meng Z, Hu Z L. Sensing system with Michelson-type fiber optical interferometer based on single FBG reflector[J]. Chinese Optics Letters, 2011, 9(11): 110601. doi: 10.3788/COL

    [27]

    Liu L, Lu P, Liao H, et al. Fiber-optic michelson interferometric acoustic sensor based on a PP/PET diaphragm[J]. IEEE Sensors Journal, 2016, 16(9): 3054-3058. doi: 10.1109/JSEN.2016.2526644

    [28]

    Markowski K, Turkiewicz J, Osuch T. Optical microphone based on Sagnac interferometer with polarization maintaining optical fibers[J]. Proceedings of SPIE, 2013, 8903: 89030Q-1- 89030Q-7. doi: 10.1117/12.2049644

    [29]

    Ma J, Yu Y Q, Jin W. Demodulation of diaphragm based acoustic sensor using Sagnac interferometer with stable phase bias[J]. Optics Express, 2015, 23(22): 29268-29278. doi: 10.1364/OE.23.029268

    [30]

    Murphy K A, Gunther M F, Vengsarkar A M, et al. Quadrature phase-shifted, extrinsic Fabry-Perot optical fiber sensors[J]. Optics Letters, 1991, 16(4): 273-275. doi: 10.1364/OL.16.000273

    [31]

    Lee C E, Taylor H F. Interferometric optical fibre sensors using internal mirrors[J]. Electronics Letters, 1988, 24(4): 193-194. doi: 10.1049/el:19880128

    [32]

    Beard P C, Mills T N. Extrinsic optical-fiber ultrasound sensor using a thin polymer film as a low-finesse Fabry-Perot interferometer[J]. Applied Optics, 1996, 35(4): 663-675. doi: 10.1364/AO.35.000663

    [33]

    Wang F Y, Shao Z Z, Xie J H, et al. Extrinsic Fabry-Pérot underwater acoustic sensor based on micromachined center-embossed diaphragm[J]. Journal of Lightwave Technology, 2014, 32(23): 4628-4636. doi: 10.1109/JLT.2014.2362494

    [34]

    Ma J, Xuan H F, Ho H L, et al. Fiber-optic Fabry-Pérot acoustic sensor with multilayer graphene diaphragm[J]. IEEE Photonics Technology Letters, 2013, 25(10): 932-935. doi: 10.1109/LPT.2013.2256343

    [35]

    Wu Y, Yu C B, Wu F, et al. A highly sensitive fiber-optic microphone based on graphene oxide membrane[J]. Journal of Lightwave Technology, 2017, 35(9): 4344-4349. doi: 10.1109/JLT.2017.2737639

    [36]

    Guo F W, Fink T, Han M, et al. High-sensitivity, high-frequency extrinsic Fabry-Perot interferometric fiber-tip sensor based on a thin silver diaphragm[J]. Optics Letters, 2012, 37(9): 1505-1507. doi: 10.1364/OL.37.001505

    [37]

    Akkaya O C, Kilic O, Digonnet M J F, et al. High-sensitivity thermally stable acoustic fiber sensor[C]//Proceedings of 2010 IEEE Sensors, 2010: 1148-1151.http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=5690823

    [38]

    Wang W H, Wu N, Tian Y, et al. Miniature all-silica optical fiber pressure sensor with an ultrathin uniform diaphragm[J]. Optics Express, 2010, 18(9): 9006-9014. doi: 10.1364/OE.18.009006

    [39]

    Webb D J. An ocean model code for array processor computers[J]. Computers & Geosciences, 1996, 22(5): 569-578. doi: 10.1016/0098-3004(95)00133-6

    [40]

    Takahashi N, Yoshimura K, Takahashi S, et al. Development of an optical fiber hydrophone with fiber Bragg grating[J]. Ultrasonics, 2000, 38(1-8): 581-585. doi: 10.1016/S0041-624X(99)00105-5

    [41]

    Guan B O, Tam H Y, Lau S T, et al. Ultrasonic hydrophone based on distributed Bragg reflector fiber laser[J]. IEEE Photonics Technology Letters, 2005, 17(1): 169-171. doi: 10.1109/LPT.2004.838141

    [42]

    Wu Q, Okabe Y. High-sensitivity ultrasonic phase-shifted fiber Bragg grating balanced sensing system[J]. Optics Express, 2012, 20(27): 28353-28362. doi: 10.1364/OE.20.028353

    [43]

    Tosi D, Olivero M, Perrone G. Optical microphone with fiber Bragg grating and signal processing techniques[J]. Proceedings of SPIE, 2008, 7098: 70981E. doi: 10.1117/12.803184

    [44]

    Nawa Y, Tsuda N, Yamada J. Small vibration sensor using self-coupling effect of semiconductor laser[J]. Review of Laser Engineering, 2008, 37(8): 619-623. doi: 10.2184/lsj.37.619

    [45]

    Mizushima D, Yoshimatsu T, Goshima K, et al. Sound detection by laser microphone using self-coupling effect of semiconductor laser[J]. IEEJ Transactions on Electronics, Information and Systems, 2016, 136(7): 1021-1026. doi: 10.1541/ieejeiss.136.1021

    [46]

    Mizushima D, Tsuda N, Yamada J. Study on laser microphone using self-couping effect of semiconductor laser for sensitivity improvement[C]//Proceedings of 2016 IEEE SENSORS, 2017: 1-3.http://ieeexplore.ieee.org/document/7808478/

    [47]

    Fischer B, Fruthwirth R, Wintner E. Optical pressure transducer without membrane: an analysis of sensor noise sources[C]//INTER-NOISE and NOISE-CON Congress and Conference Proceedings, 2011.http://www.ingentaconnect.com/content/ince/incecp/2011/00002011/00000005/art00088

    [48]

    Ciddor P E. Refractive index of air: new equations for the visible and near infrared[J]. Applied Optics, 1996, 35(9): 1566-1573. doi: 10.1364/AO.35.001566

    [49]

    Xarion Laser Acoustics. Membrane-free optical microphones[EB/OL]. (2017) http://xarion.com/products.

    [50]

    Fischer B, Reining F, Wintner E. Optical sensor: EP2525194 A1[P]. 2012-11-21.http://www.freepatentsonline.com/ep2525194.html

  • 加载中

(7)

(2)

计量
  • 文章访问数:  14009
  • PDF下载数:  6090
  • 施引文献:  0
出版历程
收稿日期:  2018-01-09
修回日期:  2018-04-11
刊出日期:  2018-09-01

目录

/

返回文章
返回