光纤微流传感技术研究进展

龚朝阳, 张晨琳, 龚元, 等. 光纤微流传感技术研究进展[J]. 光电工程, 2018, 45(9): 170573. doi: 10.12086/oee.2018.170573
引用本文: 龚朝阳, 张晨琳, 龚元, 等. 光纤微流传感技术研究进展[J]. 光电工程, 2018, 45(9): 170573. doi: 10.12086/oee.2018.170573
Gong Chaoyang, Zhang Chenlin, Gong Yuan, et al. Recent advances in fiber optofluidic sensors[J]. Opto-Electronic Engineering, 2018, 45(9): 170573. doi: 10.12086/oee.2018.170573
Citation: Gong Chaoyang, Zhang Chenlin, Gong Yuan, et al. Recent advances in fiber optofluidic sensors[J]. Opto-Electronic Engineering, 2018, 45(9): 170573. doi: 10.12086/oee.2018.170573

光纤微流传感技术研究进展

  • 基金项目:
    国家自然科学基金资助项目(61575039);111计划项目(B14039)
详细信息
    作者简介:
    通讯作者: 龚元(1981-),男,博士,教授,主要从事光纤传感与光微流技术的研究。E-mail:ygong@uestc.edu.cn
  • 中图分类号: O436.3;TN253

Recent advances in fiber optofluidic sensors

  • Fund Project: Supported by National Natural Science Foundation of China (61575039) and the 111 Project (B14039)
More Information
  • 本文介绍了本课题组在光纤微流激光传感器和无源光纤微流传感器两方面的研究进展。光纤微流激光传感器利用光纤微流激光的输出变化来探测生化参数的改变。光纤截面作为环形微腔形成光反馈,增强了腔内光子和待测物质的相互作用,从而提高了微流激光的传感灵敏度。此外,光纤尺寸均匀,易低成本、批量制作光纤微腔,可制备高重复性或一次性使用的光纤微流激光。本文还介绍了基于光力/光热效应的无源光纤微流传感器。该类传感器利用光产生的力学或热学效应对微流体进行温度、流速、浓度传感,具有灵活性高、集成度好、多功能、可重构等特点。

  • Overview: In this review, recent advances in optofluidic laser sensor and fiber optofluidic laser, as well as the passive fiber optofluidic sensors based on the optical force or photothermal effects are introduced.

    Optofluidic laser (OFL) is an emerging technology that has been extensively investigated for biochemical detection. Due to the enhanced light-matter interaction, high sensitivity of OFL sensors have been demonstrated. We recently demonstrated a highly sensitive ion detection method using optofluidic laser based on Fabry-Perot cavity. A catalytic reaction that could be inhibited by the S2- ion was employed to produce a fluorescence gain material for optofluidic laser. The limit of detection by the OFL method was orders of magnitude lower than the fluorescence method.

    Various types of microcavities including Fabry–Perot cavity, micro ring cavity and distributed feedback schemes have been investigated for optofluidic lasing. The lasing output is highly dependent on these microcavities. The mass productions with high repeatability are difficult for previous microcavities, making it hard to realize reproducible optofluidic laser. We introduced a novel fiber optofluidic laser with high reproducible microcavities. The optical fiber can be used as a ring resonator, providing optical feedback in the cross-section for lasing. Most importantly, thanks to the precise control of the fiber geometry by draw tower, the properties (including geometry, surface properties and thus Q-factor) of microcavities along the optical fiber are almost identical. The optical fiber can be mass produced with low cost and can be utilized to realize highly reproducible and disposable optofluidic laser.

    Besides the fiber optofluidic laser, passive fiber optofluidic sensors based on the laser induced force and photo-thermal effects are introduced. The laser beam offers optical force at pico-Newton scale that is very sensitive to the ambient environments. By integrating the optical fiber with microfluidic chip, single microparticle can be trapped and high performance microfluidic flow rate detection was performed based on the force balance on the microparticle. Tunable optical manipulation of microparticle was also demonstrated.

    Photo-thermal effect was also introduced by optical fiber into the microfluidic chip for sensing applications. Material with high absorption, including carbon nanotube or gold nanofilm, was coated on the fiber endface. Laser absorption near the fiber tip leads to a temperature rise. Thus microbubble was generated on the fiber tip based on the photo-thermal effect. By monitoring the generation and growth of microbubble, microfluidic parameters including flow rate, temperature, and concentration can be measured. The passive fiber optofluidic sensors have the advantages of flexible, easy to be integrated, multi-functional and reconfigurable.

  • 加载中
  • 图 1  光微流激光用于S2-传感。(a)光微流激光离子传感器结构示意图;(b)酶催化反应及抑制剂作用示意图;(c)激光输出强度与时间的关系曲线;(d)不同S2-浓度下激光出射时间

    Figure 1.  S2- detection based on optofluidic laser. (a) Structure of the laser cavity for the optofluidic catalytic laser; (b) Generation of the product as gain material and effect of the inhibitor on the catalytic reaction; (c) Spectrally integrated intensity as a function of reaction time with different S2- concentrations; (d) Laser onset time difference versus S2- concentration

    图 2  高重复光纤微流激光器[17]。(a)高重复性光纤微流激光器实验装置图;(b)微结构光纤横截面光场分布仿真结果;(c)微结构光纤输出重复性实验结果;(d)光纤微流激光阵列示意图;(e)光纤微流激光各通道输出强度

    Figure 2.  Reproducible fiber optofluidic laser[17]. (a) Schematic diagram of the experimental setup for fiber optofluidic laser; (b) Intensity distribution in the cross-section of the MOF; (c) Angular integrated intensity using 10 sections of MOFs; (d) Schematic diagram of the FOFL array; (e) The spectrally integrated intensity as a function of the lateral pump position

    图 3  基于光力操控的流速传感[27]。(a)基于光力操控的流速传感原理示意图;(b)不同激光功率下流速与操控距离的关系曲线

    Figure 3.  The flow rate sensor based on the optofluidic manipulation[27]. (a) Principle for flow rate detection; (b) Manipulation length versus flow rate at different laser powers

    图 4  双模式流速传感。(a)开环模式下的流速校准曲线;(b)闭环模式下的流速校准曲线;(c)流速传感性能曲线

    Figure 4.  Dual-mode flow rate sensing. (a) Calibration of the optofluidic flow rate sensor in open-loop mode with y axis in log scale; (b) Calibration of the optofluidic flow rate sensor in the closed-loop mode with manipulation length fixed at 15 μm, 30 μm and 60 μm, respectively; (c) Sensing performance of the optofluidic flow rate sensor

    图 5  基于光热效应的光纤微流传感器。(a)装置图;(b)气泡腔直径变化情况

    Figure 5.  The flow rate sensor based on photo thermal effect. (a) The experimental setup; (b) The generation of the fiber optofluidic microbubble-on-tip for 150 s

    图 6  基于纳米金膜的光纤微流传感器传感性能。(a)蔗糖浓度传感;(b)双氧水浓度传感

    Figure 6.  Concentration sensing of the fiber optofluidic sensor coated with gold nanofilm. (a) Sucrose; (b) H2O2

  • [1]

    Kim S, Streets A M, Lin R R, et al. High-throughput single-molecule optofluidic analysis[J]. Nature Methods, 2011, 8(3): 242-245. doi: 10.1038/nmeth.1569

    [2]

    Bykov D S, Schmidt O A, Euser T G, et al. Flying particle sensors in hollow-core photonic crystal fibre[J]. Nature Photonics, 2015, 9: 461-465. doi: 10.1038/nphoton.2015.94

    [3]

    Zhang Y, Lei H X, Li B J. Refractive-index-based sorting of colloidal particles using a subwavelength optical fiber in a static fluid[J]. Applied Physics Express, 2013, 6(7): 072001. doi: 10.7567/APEX.6.072001

    [4]

    Zhang Y, Liang P B, Liu Z H, et al. A novel temperature sensor based on optical trapping technology[J]. Journal of Lightwave Technology, 2014, 32(7): 1394-1398. doi: 10.1109/JLT.2014.2305517

    [5]

    Wang Y, Leck K S, Ta V D, et al. Blue liquid lasers from solution of CdZnS/ZnS ternary alloy quantum dots with quasi-continuous pumping[J]. Advanced Materials, 2015, 27(1): 169-175. doi: 10.1002/adma.v27.1

    [6]

    Li Z L, Liu Y G, Yan M, et al. A simplified hollow-core microstructured optical fibre laser with microring resonators and strong radial emission[J]. Applied Physics Letters, 2014, 105(7): 071902. doi: 10.1063/1.4893456

    [7]

    Zhang N, Liu H, Stolyarov A M, et al. Azimuthally polarized radial emission from a quantum dot fiber laser[J]. ACS Photonics, 2016, 3(12): 2275-2279. doi: 10.1021/acsphotonics.6b00724

    [8]

    Liu X L, Ding W, Wang Y Y, et al. Characterization of a liquid-filled nodeless anti-resonant fiber for biochemical sensing[J]. Optics Letters, 2017, 42(4): 863-866. doi: 10.1364/OL.42.000863

    [9]

    Gu F X, Xie F M, Lin X, et al. Single whispering-gallery mode lasing in polymer bottle microresonators via spatial pump engineering[J]. Light: Science & Applications, 2017, 6: e17061. doi: 10.1038/lsa.2017.61

    [10]

    Gerosa R M, Sudirman A, de S Menezes L, et al. All-fiber high repetition rate microfluidic dye laser[J]. Optica, 2015, 2(2): 186-193. doi: 10.1364/OPTICA.2.000186

    [11]

    Fan X D, White I M. Optofluidic microsystems for chemical and biological analysis[J]. Nature Photonics, 2011, 5(10): 591-597. doi: 10.1038/nphoton.2011.206

    [12]

    Humar M, Yun S H. Intracellular microlasers[J]. Nature Photonics, 2015, 9(9): 572-576. doi: 10.1038/nphoton.2015.129

    [13]

    Fan X D, Yun S K H. The potential of optofluidic biolasers[J]. Nature Methods, 2014, 11: 141-147. doi: 10.1038/nmeth.2805

    [14]

    Gong C Y, Gong Y, Oo M K K, et al. Sensitive sulfide ion detection by optofluidic catalytic laser using horseradish peroxidase (HRP) enzyme[J]. Biosensors and Bioelectronics, 2017, 96: 351-357. doi: 10.1016/j.bios.2017.05.024

    [15]

    Wu J Y, Wang W, Gong C Y, et al. Tuning the strength of intramolecular charge-transfer of triene-based nonlinear optical dyes for electro-optics and optofluidic lasers[J]. Journal of Materials Chemistry C, 2017, 5(30): 7472-7478. doi: 10.1039/C7TC00958E

    [16]

    Ton X A, Acha V, Bonomi P, et al. A disposable evanescent wave fiber optic sensor coated with a molecularly imprinted polymer as a selective fluorescence probe[J]. Biosensors and Bioelectronics, 2015, 64: 359-366. doi: 10.1016/j.bios.2014.09.017

    [17]

    Gong C Y, Gong Y, Chen Q S, et al. Reproducible fiber optofluidic laser for disposable and array applications[J]. Lab on a Chip, 2017, 17(20): 3431-3436. doi: 10.1039/C7LC00708F

    [18]

    Mullokandov G, Baccarini A, Ruzo A, et al. High-throughput assessment of microRNA activity and function using microRNA sensor and decoy libraries[J]. Nature Methods, 2012, 9(8): 840-846. doi: 10.1038/nmeth.2078

    [19]

    Gong C Y, Gong Y, Zhang W L, et al. Fiber optofluidic microlaser with lateral single mode emission[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(3): 7940047. doi: 10.1109/JSTQE.2017.2712622

    [20]

    Chen Q S, Ritt M, Sivaramakrishnan S, et al. Optofluidic lasers with a single molecular layer of gain[J]. Lab on a Chip, 2014, 14(24): 4590-4595. doi: 10.1039/C4LC00872C

    [21]

    Lee W, Chen Q S, Fan X D, et al. Digital DNA detection based on a compact optofluidic laser with ultra-low sample consumption[J]. Lab on A Chip, 2016, 16(24): 4770-4776. doi: 10.1039/C6LC01258B

    [22]

    Gong Y, Ye A Y, Wu Y, et al. Graded-index fiber tip optical tweezers: Numerical simulation and trapping experiment[J]. Optics Express, 2013, 21(13): 16181-16190. doi: 10.1364/OE.21.016181

    [23]

    Liu Z H, Guo C K, Yang J, et al. Tapered fiber optical tweezers for microscopic particle trapping: Fabrication and application[J]. Optics Express, 2006, 14(25): 12510-12516. doi: 10.1364/OE.14.012510

    [24]

    Gong Y, Zhang C L, Liu Q F, et al. Optofluidic tunable manipulation of microparticles by integrating graded-index fiber taper with a microcavity[J]. Optics Express, 2015, 23(3): 3762-3769. doi: 10.1364/OE.23.003762

    [25]

    Zhang C L, Gong Y, Liu Q F, et al. Graded-index fiber enabled strain-controllable optofluidic manipulation[J]. IEEE Photonics Technology Letters, 2016, 28(3): 256-259. doi: 10.1109/LPT.2015.2494583

    [26]

    Gong Y, Huang W, Liu Q F, et al. Graded-index optical fiber tweezers with long manipulation length[J]. Optics Express, 2014, 22(21): 25267-25276. doi: 10.1364/OE.22.025267

    [27]

    Gong Y, Liu Q F, Zhang C L, et al. Microfluidic flow rate detection with a large dynamic range by optical manipulation[J]. IEEE Photonics Technology Letters, 2015, 27(23): 2508-2511. doi: 10.1109/LPT.2015.2473836

    [28]

    Gong Y, Qiu L M, Zhang C L, et al. Dual-mode fiber optofluidic flowmeter with a large dynamic range[J]. Journal of Lightwave Technology, 2017, 35(11): 2156-2160. doi: 10.1109/JLT.2017.2661478

    [29]

    Gong Y, Zhang M L, Gong C Y, et al. Sensitive optofluidic flow rate sensor based on laser heating and microring resonator[J]. Microfluidics and Nanofluidics, 2015, 19(6): 1497-1505. doi: 10.1007/s10404-015-1663-4

    [30]

    Zhang C L, Gong Y, Zou W L, et al. Microbubble-based fiber optofluidic interferometer for sensing[J]. Journal of Lightwave Technology, 2017, 35(13): 2514-2519. doi: 10.1109/JLT.2017.2696957

    [31]

    Zhang C L, Gong Y, Wu Y, et al. Lab-on-tip based on photothermal microbubble generation for concentration detection[J]. Sensors and Actuators B: Chemical, 2018, 255: 2504-2509. doi: 10.1016/j.snb.2017.09.055

  • 加载中

(6)

计量
  • 文章访问数:  9029
  • PDF下载数:  3767
  • 施引文献:  0
出版历程
收稿日期:  2017-10-26
修回日期:  2018-03-13
刊出日期:  2018-09-01

目录

/

返回文章
返回