高精度光纤光栅传感技术及其在地球物理勘探、地震观测和海洋领域中的应用

张文涛, 黄稳柱, 李芳. 高精度光纤光栅传感技术及其在地球物理勘探、地震观测和海洋领域中的应用[J]. 光电工程, 2018, 45(9): 170615. doi: 10.12086/oee.2018.170615
引用本文: 张文涛, 黄稳柱, 李芳. 高精度光纤光栅传感技术及其在地球物理勘探、地震观测和海洋领域中的应用[J]. 光电工程, 2018, 45(9): 170615. doi: 10.12086/oee.2018.170615
Zhang Wentao, Huang Wenzhu, Li Fang. High-resolution fiber Bragg grating sensor and its applications of geophysical exploration, seismic observation and marine engineering[J]. Opto-Electronic Engineering, 2018, 45(9): 170615. doi: 10.12086/oee.2018.170615
Citation: Zhang Wentao, Huang Wenzhu, Li Fang. High-resolution fiber Bragg grating sensor and its applications of geophysical exploration, seismic observation and marine engineering[J]. Opto-Electronic Engineering, 2018, 45(9): 170615. doi: 10.12086/oee.2018.170615

高精度光纤光栅传感技术及其在地球物理勘探、地震观测和海洋领域中的应用

  • 基金项目:
    国家重点研发计划(2017YFB0405503);国家自然科学基金资助项目(61605196);中国科学院青年创新促进会(2016106)
详细信息
    通讯作者: 张文涛(1980-),男,博士,研究员,主要从事光纤传感的研究。E-mail:zhangwt@semi.ac.cn
  • 中图分类号: O436.3;TN253

High-resolution fiber Bragg grating sensor and its applications of geophysical exploration, seismic observation and marine engineering

  • Fund Project: Supported by National Key R & D Program of China (2017YFB0405503), NSFC (61605196), and Youth Innovation Promotion Association of CAS (2016106)
More Information
  • 随着特种光纤光栅刻写制作技术以及信号解调技术的发展,光纤光栅传感器的测量精度和测量频带不断得到提升,这大大促进了其在地球物理勘探、地震观测以及海洋观测等具有高精度探测需求的领域中的应用。当前,高精度宽频带光纤光栅传感器的发展依然面临一些核心器件与关键技术方面的挑战,包括高精细度光纤光栅谐振腔、低噪声窄线宽可调谐激光光源等核心器件,高精度宽频带光纤光栅波长解调技术、大规模组网技术、高灵敏度信号拾取探头设计等关键技术。本文首先介绍了高精度光纤光栅传感技术的发展概况,然后重点阐述高精度光纤光栅传感系统所需的核心器件与关键技术,并对其在地球物理勘探、地震观测和海洋观测中的应用情况进行分析探讨,最后对高精度光纤光栅传感技术及其应用作了展望。本文旨在分析总结高精度光纤光栅传感技术及其应用中涉及的一些核心技术和急需解决的关键问题,以期为该项技术的发展和应用提供借鉴。

  • Overview: Nowadays, with the development of fiber Bragg grating (FBG) and FBG based resonant cavity engraving technique, signal demodulation technique, the measurement precision and frequency band range of FBG sensor are constantly improved. This can greatly promote its application in the field of geophysical exploration, seismic observation and marine observation. At present, high-precision broadband FBG sensor is still facing some challenges about core devices and key techniques. The core devices include high-fineness FBG based resonant, low-noise narrow-linewidth tunable laser. The key techniques include high-precision broadband FBG wavelength demodulation technique, large-scale networking technique and high-sensitivity signal pickup probe design. Firstly, this paper introduces the development of high-precision FBG sensing technique. Nearly three years, some novel sensing mechanism, demodulation method and sensing applications have been proposed. This improves the FBG low-frequency strain measurement resolution to 10-10, which makes it possible for the FBG sensors to be applied in geophysical exploration, seismic observation and marine observation. However, the system measurement resolution and dynamic range still need to be further improved. The high-precision temperature compensation and large-scale multiplexing technique are also the key problems to be solved. Secondly, this paper focuses on the cord devices and key techniques required for high-precision FBG sensing system and their applications in geophysical exploration, seismic observations and ocean observation. The cord devices include high-fineness FBG resonator, low noise narrow linewidth tunable laser. The key techniques include high-resolution broadband FBG signal interrogation technique, large-scale networking technique and high sensitivity signal detector design. Finally, in order to provide references for the development and application of high-precision fiber Bragg grating sensing technology, this paper aims to analyze and summarize some of the core techniques involved in high-precision FBG sensing technique and its application and the key issues that need to be solved in the field of geophysical exploration, seismic observation and marine observation.

  • 加载中
  • 图 1  光纤光栅谐振腔反射光谱

    Figure 1.  The picture and reflection spectra of FBG resonant cavity

    图 2  NKT Photonic公司光纤激光器的相位噪声和频率噪声图[42]

    Figure 2.  The phase noise and frequency noise map of fiber laser from NKT Photonic company[42]

    图 3  提高窄线宽可调谐激光性能的原理图

    Figure 3.  The schematic diagram for improving the performance of narrow linewidth tunable laser

    图 4  基于光频梳的高精度光纤光栅谐振腔波长解调原理[28]

    Figure 4.  The high-resolution FBG resonator wavelength demodulation principle based on optical frequency comb [28]

    图 5  基于抑制载波扫频调制技术的高精度光纤光栅宽频带波长解调原理[35]

    Figure 5.  The high-resolution FBG resonator wavelength demodulation principle based on suppressed carrier sweep frequency modulation technique[35]

    图 6  基于光纤激光器和拍频测量原理的(a)高精度光纤光栅宽频带波长解调原理和(b)锁频功率密度谱[40]

    Figure 6.  (a) The high-resolution FBG resonator wavelength demodulation principle and (b) frequency-locked laser power density spectrum based on fiber laser and beat frequency measurement technique[40]

    图 7  高灵敏度相移光栅地震计的(a)结构原理图和(b)频响特性[44]

    Figure 7.  (a) The structure schematic diagram and (b) frequency response of high sensitivity phase shifted FBG[44]

    图 8  中国科学院半导体研究所的井下光纤激光检波器及其与Sercel动圈检波器的对比实验。(a)~(c)分别为动圈检波器和光纤检波器接收的放炮直达波和深层反射波信号[49]

    Figure 8.  The fiber laser geophones of Insitute of Semiconductors, CAS and the comparison experiment with Sercel moving-coil geophones. (a)~(c) are the direct wave and deep reflection signals recorded by optic fiber sensors and moving-coil sensors re-spectively[49]

    图 9  意大利国家光学研究所的光纤光栅地震探测系统[51]

    Figure 9.  The FBG seismic detection system from Italian Istituto Nazionale di Ottica[51]

    图 10  (a) 上海交通大学的光纤光栅地壳形变观测系统;(b)系统记录的固体潮信号[53]

    Figure 10.  (a) The FBG crustal deformation observation system; (b) Recorded tide signals from Shanghai Jiao Tong University[53]

    图 11  (a) 中国科学院半导体研究所的基岩钻孔型光纤光栅应变仪;(b)记录的固体潮信号

    Figure 11.  (a) The short-baseline FBG strain sensor and (b) recorded tide from Institute of Semiconductors, CAS

    图 12  高精度光纤光栅海底地震与海啸预警系统[61]

    Figure 12.  High precision FBG submarine earthquake and tsunami warning system[61]

    图 13  光纤激光海底地震仪及其水下气枪记录对比实验。(a)光纤海底地震仪实物图;(b)水下对比实验示意图;(c)光纤海底地震仪与电学海底地震仪单分量时域波形对比图

    Figure 13.  The underwater comparison experiment of fiber laser submarine seismograph recording the air gun signals. (a) The picture of fiber submarine seismograph; (b) Schematic experiment diagram; (c) Sin-gle-component time domain waveform comparison diagram between fiber submarine seismograph and electrical submarine seismograph

  • [1]

    Majumder M, Gangopadhyay T K, Chakraborty A K, et al. Fibre Bragg gratings in structural health monitoring—Present status and applications[J]. Sensors and Actuators A: Physical, 2008, 147(1): 150-164. doi: 10.1016/j.sna.2008.04.008

    [2]

    Li H N, Li D S, Song G B. Recent applications of fiber optic sensors to health monitoring in civil engineering[J]. Engineering Structures, 2004, 26(11): 1647-1657. doi: 10.1016/j.engstruct.2004.05.018

    [3]

    Willsch R, Ecke W, Bartelt H. Optical fiber grating sensor networks and their application in electric power facilities, aerospace and geotechnical engineering[C]//IEEE Optical Fiber Sensors Conference Technical Digest, 2002: 49-54.http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=1000499

    [4]

    Hill K O, Meltz G. Fiber Bragg grating technology fundamentals and overview[J]. Journal of Lightwave Technology, 1997, 15(8): 1263-1276. doi: 10.1109/50.618320

    [5]

    Martinez A, Dubov M, Khrushchev I, et al. Direct writing of fibre Bragg gratings by femtosecond laser[J]. Electronics Letters, 2004, 40(19): 1170-1172. doi: 10.1049/el:20046050

    [6]

    Zhao Y, Liao Y B. Discrimination methods and demodulation techniques for fiber Bragg grating sensors[J]. Optics and Lasers in Engineering, 2004, 41(1): 1-18. doi: 10.1016/S0143-8166(02)00117-3

    [7]

    Davis M A, Kersey A D. Matched-filter interrogation technique for fibre Bragg grating arrays[J]. Electronics Letters, 1995, 31(10): 822-823. doi: 10.1049/el:19950547

    [8]

    Fu H Y, Liu H L, Dong X, et al. High-speed fibre Bragg grating sensor interrogation using dispersion compensation fibre[J]. Electronics Letters, 2008, 44(10): 618-619. doi: 10.1049/el:20080859

    [9]

    Kersey A D, Berkoff T A, Morey W W. Multiplexed fiber Bragg grating strain-sensor system with a fiber Fabry-Perot wavelength filter[J]. Optics Letters, 1993, 18(16): 1370-1372. doi: 10.1364/OL.18.001370

    [10]

    周振安, 刘爱英.光纤光栅传感器用于高精度应变测量研究[J].地球物理学进展, 2005, 20(3): 864-866. doi: 10.3969/j.issn.1004-2903.2005.03.047

    Zhou Z A, Liu A Y. The application of Fiber Bragg grating sensor to high precision strain measure[J]. Progress in Geophysics, 2005, 20(3): 864-866. doi: 10.3969/j.issn.1004-2903.2005.03.047

    [11]

    High sensitivity MEMS dual detector[OE/OL]. http://www.sitan-china.com/chanpinjieshao/wtyq/glmdm/.

    [12]

    TBA-33M downhole force balance accelerometer[OE/OL]. http://www.tai-de.com/details.php?name=tbatbg_33m&type=prod.

    [13]

    Accelerometer os7100[OE/OL]. http://www.micronoptics.com/product/accelerometer-os7100/.

    [14]

    Digital Hydrophone. [OE/OL]. http://www.acousnet.com/pro.aspx?id=158.

    [15]

    Pendry J B. Negative refraction makes a perfect lens[J]. Physical Review Letters, 2000, 85(18): 3966-3969. doi: 10.1103/PhysRevLett.85.3966

    [16]

    Takahashi N, Yoshimura K, Takahashi S. Characteristics of fiber Bragg grating hydrophone[J]. IEICE Transactions on Electronics, 2000, 83(3): 275-281. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ029432556

    [17]

    邱泽华, 石耀霖.国外钻孔应变观测的发展现状[J].地震学报, 2004, 26(S1): 162-168. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK200401700640

    Qiu Z H, Shi Y L. Developments of borehole strain observation outside China[J]. Acta Seismologica Sinica, 2004, 26(S1): 162-168. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK200401700640

    [18]

    池顺良.深井宽频钻孔应变地震仪与高频地震学——地震预测观测技术的发展方向, 实现地震预报的希望[J].地球物理学进展, 2007, 22(4): 1164-1170. doi: 10.3969/j.issn.1004-2903.2007.04.023

    Chi S L. Deep-hole broad-band strain-seismograph and high-frequency seimology——the hope to successful earthquake prediction[J]. Progress in Geophysics, 2007, 22(4): 1164-1170. doi: 10.3969/j.issn.1004-2903.2007.04.023

    [19]

    刘育梁, 何俊, 王永杰, 等.光纤地震波探测的研究进展[J].激光与光电子学进展, 2009, 46(11): 21-28. http://en.cnki.com.cn/Article_en/CJFDTOTAL-JGDJ200911005.htm

    Liu Y L, He J, Wang Y J, et al. Progress of seismic wave detection by fiber-optic sensors[J]. Laser & Optoelectronics Progress, 2009, 46(11): 21-28. http://en.cnki.com.cn/Article_en/CJFDTOTAL-JGDJ200911005.htm

    [20]

    刘文义, 张文涛, 李丽, 等.光纤传感技术——未来地震监测的发展方向[J].地震, 2012, 32(4): 92-102. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZN201204010.htm

    Liu W Y, Zhang W T, Li L, et al. Optical fiber sensory technology: future direction for earthquake precursor monitoring[J]. Earthquake, 2012, 32(4): 92-102. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZN201204010.htm

    [21]

    Lissak B, Arie A, Tur M. Highly sensitive dynamic strain measurements by locking lasers to fiber Bragg gratings[J]. Optics Letters, 1998, 23(24): 1930-1932. doi: 10.1364/OL.23.001930

    [22]

    Arie A, Lissak B, Tur M. Static fiber-Bragg grating strain sensing using frequency-locked lasers[J]. Journal of Lightwave Technology, 1999, 17(10): 1849-1855. doi: 10.1109/50.793765

    [23]

    Chow J H, Littler I C M, De Vine G, et al. Phase-sensitive interrogation of fiber Bragg grating resonators for sensing applications[J]. Journal of Lightwave Technology, 2005, 23(5): 1881-1889. doi: 10.1109/JLT.2005.846895

    [24]

    Chow J H, Littler I C M, Mcclelland D E, et al. Laser frequency-noise-limited ultrahigh resolution remote fiber sensing[J]. Optics Express, 2006, 14(11): 4617-4624. doi: 10.1364/OE.14.004617

    [25]

    Gagliardi G, Salza M, Ferraro P, et al. Fiber Bragg-grating strain sensor interrogation using laser radio-frequency modulation[J]. Optics Express, 2005, 13(7): 2377-2384. doi: 10.1364/OPEX.13.002377

    [26]

    Lam T T Y, Chow J H, Mow-Lowry C M, et al. A stabilized fiber laser for high-resolution low-frequency strain sensing[J]. IEEE Sensors Journal, 2009, 9(8): 983-986. doi: 10.1109/JSEN.2009.2024040

    [27]

    Lam T T Y, Chow J H, Shaddock D A, et al. High-resolution absolute frequency referenced fiber optic sensor for quasi-static strain sensing[J]. Applied Optics, 2010, 49(21): 4029-4033. doi: 10.1364/AO.49.004029

    [28]

    Gagliardi G, Salza M, Avino S, et al. Probing the ultimate limit of fiber-optic strain sensing[J]. Science, 2010, 330(6007): 1081-1084. doi: 10.1126/science.1195818

    [29]

    Liu Q W, Tokunaga T, He Z Y. Realization of Nano static strain sensing with fiber Bragg gratings interrogated by narrow linewidth tunable lasers[J]. Optics Express, 2011, 19(21): 20214-20223. doi: 10.1364/OE.19.020214

    [30]

    Liu Q W, Tokunaga T, He Z Y. Ultra-high-resolution large-dynamic-range optical fiber static strain sensor using Pound-Drever-Hall technique[J]. Optics Letters, 2011, 36(20): 4044-4046. doi: 10.1364/OL.36.004044

    [31]

    Malara P, Mastronardi L, Campanella C E, et al. Split-mode fiber Bragg grating sensor for high-resolution static strain measurements[J]. Optics Letters, 2014, 39(24): 6899-6902. doi: 10.1364/OL.39.006899

    [32]

    Chen J G, Liu Q W, He Z Y. Time-domain multiplexed high resolution fiber optics strain sensor system based on temporal response of fiber Fabry-Perot interferometers[J]. Optics Express, 2017, 25(18): 21914-21925. doi: 10.1364/OE.25.021914

    [33]

    Huang W Z, Zhang W T, Zhen T K, et al. A cross-correlation method in wavelet domain for demodulation of FBG-FP static-strain sensors[J]. IEEE Photonics Technology Letters, 2014, 26(16): 1597-1600. doi: 10.1109/LPT.2014.2327969

    [34]

    Huang W Z, Zhang W T, Zhen T K, et al. π-phase-shifted FBG for high-resolution static-strain measurement based on wavelet threshold denoising algorithm[J]. Journal of Lightwave Technology, 2014, 32(22): 3692-3698. doi: 10.1109/JLT.2014.2354413

    [35]

    Huang W Z, Zhang W T, Li F. Swept optical SSB-SC modulation technique for high-resolution large-dynamic-range static strain measurement using FBG-FP sensors[J]. Optics Letters, 2015, 40(7): 1406-1409. doi: 10.1364/OL.40.001406

    [36]

    Yoshino T, Kurosawa K, Itoh K, et al. Fiber-optic Fabry-Perot interferometer and its sensor applications[J]. IEEE Transactions on Microwave Theory and Techniques, 1982, 30(10): 1612-1621. doi: 10.1109/TMTT.1982.1131298

    [37]

    吴朝霞, 吴飞, 蔡璐璐, 等. Bragg光纤光栅法布里-珀罗传感器的应变测量[J].光学技术, 2005, 31(4): 559-562. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=GXJS200504026&dbname=CJFD&dbcode=CJFQ

    Wu Z X, Wu F, Cai L L, et al. Strain measurement using a fiber Bragg grating Fabry-Perot sensor[J]. Optical Technique, 2005, 31(4): 559-562. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=GXJS200504026&dbname=CJFD&dbcode=CJFQ

    [38]

    Tsai W H, Lin C J. A novel structure for the intrinsic Fabry-Perot fiber-optic temperature sensor[J]. Journal of Lightwave Technology, 2001, 19(5): 682-686. doi: 10.1109/50.923481

    [39]

    Avino S, Giorgini A, De Natale P, et al. Fiber-optic resonators for strain-acoustic sensing and chemical spectroscopy[M]//GAGLIARDI G, LOOCK H P. Cavity-Enhanced Spectroscopy and Sensing. Berlin, Heidelberg: Springer, 2014: 463-484.

    [40]

    Huang W Z, Feng S W, Zhang W T, et al. DFB fiber laser static strain sensor based on beat frequency interrogation with a reference fiber laser locked to a FBG resonator[J]. Optics Express, 2016, 24(11): 12321-12329. doi: 10.1364/OE.24.012321

    [41]

    Rønnekleiv E. Frequency and intensity noise of single frequency fiber Bragg grating lasers[J]. Optical Fiber Technology, 2001, 7(3): 206-235. doi: 10.1006/ofte.2001.0357

    [42]

    New low noise koheras basik and adjustik fiber laser[EB/OL]. http://www.nktphotonics.com/lasers-fibers/en/2016/06/07/new-koheras-basik-adjustik-fiber-lasers/.

    [43]

    Chen J G, Liu Q W, Fan X Y, et al. Sub-Nano-strain multiplexed fiber optic sensor array for quasi-static strain measurement[J]. IEEE Photonics Technology Letters, 2016, 28(21): 2311-2314. doi: 10.1109/LPT.2016.2592506

    [44]

    张文涛, 黄稳柱, 罗英波, 等.高精度光纤光栅地震计[J].传感技术学报, 2017, 30(4): 491-495. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=CGJS201704001&dbname=CJFD&dbcode=CJFQ

    Zhang W T, Huang W Z, Luo Y B, et al. High resolution fiber optic seismometer[J]. Chinese Journal of Sensors and Actuators, 2017, 30(4): 491-495. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=CGJS201704001&dbname=CJFD&dbcode=CJFQ

    [45]

    Knudsen S, Havsgård G B, Berg A, et al. High resolution fiber-optic 3-C seismic sensor system for in-well imaging and monitoring applications[C]//Proceedings of the 18th International Conference on Optical Fiber Sensors, 2006: FB2. http://www.opticsinfobase.org/abstract.cfm?uri=OFS-2006-FB2

    [46]

    耿启立.地震数据采集系统产品现状及发展趋势(上)[J].地质装备, 2016, 17(5): 21-31, 37. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=DZZB201605014&dbname=CJFD&dbcode=CJFQ

    [47]

    曾然, 林君, 赵玉江.地震检波器的发展现状及其在地震台阵观测中的应用[J].地球物理学进展, 2014, 29(5): 2106-2112. doi: 10.6038/pg20140517

    Zeng R, Lin J, Zhao Y J. Development situation of geophones and its application in seismic array observation[J]. Progress in Geophysics, 2014, 29(5): 2106-2112. doi: 10.6038/pg20140517

    [48]

    Zhang Y, Ning J, Yang S M, et al. Field test investigation of fiber optic seismic geophone in oilfield exploration[J]. Proceedings of SPIE, 2007, 6770: 677005. doi: 10.1117/12.734274

    [49]

    The high performance optical fiber seismometer of institute of semiconductors was successfully tested in liaohe oilfield [EB/OL] http://www.cas.cn/ky/kyjz/201102/t20110216_3071949.shtml.

    [50]

    Zumberge M A, Wyatt F K, Yu D X, et al. Optical fibers for measurement of earth strain[J]. Applied Optics, 1988, 27(19): 4131-4138. doi: 10.1364/AO.27.004131

    [51]

    Gagliardi G, Maddaloni P, Malara P, et al. Ultra-high sensitivity frequency-comb-referenced multi-parametric sensors based on 1-D photonic components[J]. Proceedings of SPIE, 2008, 7056: 70560I. doi: 10.1117/12.795015

    [52]

    Liu Q W, He Z Y, Tokunaga T. Sensing the earth crustal deformation with Nano-strain resolution fiber-optic sensors[J]. Optics Express, 2015, 23(11): A428-A436. doi: 10.1364/OE.23.00A428

    [53]

    何祖源, 刘庆文, 陈嘉庚.面向地壳形变观测的超高分辨率光纤应变传感系统[J].物理学报, 2017, 66(7): 074208. doi: 10.7498/aps.66.074208

    He Z Y, Liu Q W, Chen J G. Ultrahigh resolution fiber optic strain sensing system for crustal deformation observation[J]. Acta Physica Sinica, 2017, 66(7): 074208. doi: 10.7498/aps.66.074208

    [54]

    李海亮, 李宏.钻孔应变观测现状与展望[J].地质学报, 2010, 84(6): 895-900. http://www.geojournals.cn/dzxb/ch/reader/view_abstract.aspx?file_no=xb20100613&flag=1

    Li H L, Li H. Status and developments of borehole strain observations in China[J]. Acta Geologica Sinica, 2010, 84(6): 895-900. http://www.geojournals.cn/dzxb/ch/reader/view_abstract.aspx?file_no=xb20100613&flag=1

    [55]

    邱泽华, 谢富仁, 苏恺之, 等.发展钻孔应变观测的战略构想[J].国际地震动态, 2004(1): 7-14. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=GJZT200401001&dbname=CJFD&dbcode=CJFQ

    Qiu Z H, Xie F R, Su K Z, et al. New era of borehole strain observation[J]. Recent Developments in world Seismology, 2004(1): 7-14. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=GJZT200401001&dbname=CJFD&dbcode=CJFQ

    [56]

    张文涛, 李芳. 光纤钻孔应变仪: 中国, CN201110272950. 6[P]. 2012-01-18.

    Zhang W T, Li F. Optical fiber drilling strain gauge: CN, CN201110272950. 6[P]. 2012-01-18.

    [57]

    张文涛, 李芳. 光纤体应变仪: 中国, CN201110272995. 3[P]. 2012-02-22.http://www.irgrid.ac.cn/handle/1471x/488793

    Zhang W T, Li F. Fiber body strain gauge: CN, CN201110272995. 3[P]. 2012-02-22.

    [58]

    张文涛, 李芳. 分量式光纤钻孔应变仪: 中国, CN2011102723 89. 1[P]. 2012-02-22.http://www.irgrid.ac.cn/handle/1471x/488794

    Zhang W T, Li F. Component-type optical fiber drilling deformeter: CN, CN201110272389. 1[P]. 2012-02-22.

    [59]

    张文涛, 李芳. 一种测量状态量的光纤钻孔应变仪: 中国, CN201110272925. 8[P]. 2012-05-22.http://www.irgrid.ac.cn/handle/1471x/488789

    Zhang W T, Li F. Optical fiber borehole strainmeter for measuring state quantity: CN, CN201110272925. 8[P]. 2012-05-22.

    [60]

    Permanent reservoir monitoring[EB/OL]. https://www.pgs.com/marine-acquisition/services/permanent-reservoir-monitoring/.

    [61]

    Fujihashi K, Aoki T, Okutsu M, et al. Development of seafloor seismic and tsunami observation system[C]//Proceedings of 2007 Symposium on Underwater Technology and Workshop on Scientific Use of Submarine Cables and Related Technologies, 2007: 349-355.

    [62]

    电科.中国电科成功研制海洋地震海啸监测用光纤传感器系统[J].军民两用技术与产品, 2014(12): 38. http://www.cnki.com.cn/Article/CJFDTOTAL-HTJM201412099.htm

    [63]

    Zhang W T, Wang Z G, Huang W Z, et al. Fiber laser sensors for micro seismic monitoring[J]. Measurement, 2016, 79: 203-210. doi: 10.1016/j.measurement.2015.09.046

  • 加载中

(13)

计量
  • 文章访问数:  12874
  • PDF下载数:  6168
  • 施引文献:  0
出版历程
收稿日期:  2017-10-09
修回日期:  2018-01-09
刊出日期:  2018-09-01

目录

/

返回文章
返回