作为分布式光纤传感器核心技术,光反射仪能够对光纤进行非破坏性检测,获取沿光纤长度的反射率、折射率和偏振态等分布信息来判断光纤链路各类异常“事件”。在一些高端监测领域,例如光纤到户(fiber-to-the-home, FTTH)接入网的故障诊断、大型发电机组和大型变压器内部的热点和形变监测以及大飞机的机翼结构安全监测等应用,对传感器空间分辨率、测量距离等性能提出了非常高的要求。本文总结了光反射仪技术国内外的研究现状,并针对应用需求,回顾了几种实现长距离高空间分辨率光反射仪的关键技术及其在实现更高性能时所面临的技术难点。针对各类技术难点,分别提出三种创新性方案,从三种不同角度加以改善,推动光反射仪技术在分布式传感系统中的应用。
超高空间分辨率光反射仪关键技术进展
作者单位信息

出版日期:2018年9月1日
摘要
英文长摘要
参考文献
1 Barnoski M K, Jensen S M. Fiber waveguides: a novel technique for investigating attenuation characteristics[J]. Applied Optics, 1976, 15(9): 2112-2115. DOI:10.1364/AO.15.002112
2 Liokumovich L B, Ushakov N A, Kotov O I, et al. Fundamentals of optical fiber sensing schemes based on coherent optical time domain reflectometry: signal model under static fiber conditions[J]. Journal of Lightwave Technology, 2015, 33(17): 3660-3671. DOI:10.1109/JLT.2015.2449085
3 Martins H F, Martín-López S, Corredera P, et al. Phase-sensitive optical time domain reflectometer assisted by first-order Raman amplification for distributed vibration sensing over > 100 km[J]. Journal of Lightwave Technology, 2014, 32(8): 1510-1518. DOI:10.1109/JLT.2014.2308354
4 Martins H F, Martin-Lopez S, Corredera P, et al. Coherent noise reduction in high visibility phase-sensitive optical time domain reflectometer for distributed sensing of ultrasonic waves[J]. Journal of Lightwave Technology, 2013, 31(23): 3631-3637. DOI:10.1109/JLT.2013.2286223
5 Eickhoff W, Ulrich R. Optical frequency domain reflectometry in single‐mode fiber[J]. Applied Physics Letters, 1981, 39(9): 693-695. DOI:10.1063/1.92872
6 Takada K, Yokohama I, Chida K, et al. New measurement system for fault location in optical waveguide devices based on an interferometric technique[J]. Applied Optics, 1987, 26(9): 1603-1606. DOI:10.1364/AO.26.001603
7 Soller B J, Gifford D K, Wolfe M S, et al. High resolution optical frequency domain reflectometry for characterization of components and assemblies[J]. Optics Express, 2005, 13(2): 666-674. DOI:10.1364/OPEX.13.000666
8 Bethea C G, Levine B F, Cova S, et al. High-resolution and high-sensitivity optical-time-domain reflectometer[J]. Optics Letters, 1988, 13(3): 233-235. DOI:10.1364/OL.13.000233
9 Legré M, Thew R, Zbinden H, et al. High resolution optical time domain reflectometer based on 1.55 μm up-conversion photon-counting module[J]. Optics Express, 2007, 15(13): 8237-8242. DOI:10.1364/OE.15.008237
10 Shentu G L, Sun Q C, Jiang X, et al. 217 km long distance photon-counting optical time-domain reflectometry based on ultra-low noise up-conversion single photon detector[J]. Optics Express, 2013, 21(21): 24674-24679. DOI:10.1364/OE.21.024674
11 Zhao Q Y, Hu J H, Zhang X P, et al. Photon-counting optical time-domain reflectometry with superconducting nanowire single-photon detectors[C]//Proceedings of the IEEE 14th International Superconductive Electronics Conference (ISEC), 2013: 1-3.
12 Wang Y C, Wang B J, Wang A B. Chaotic correlation optical time domain reflectometer utilizing laser diode[J]. IEEE Photonics Technology Letters, 2008, 20(19): 1636-1638. DOI:10.1109/LPT.2008.2002745
13 Wang Z N, Fan M Q, Zhang L, et al. Long-range and high-precision correlation optical time-domain reflectometry utilizing an all-fiber chaotic source[J]. Optics Express, 2015, 23(12): 15514-15520. DOI:10.1364/OE.23.015514
14 Zhang L M, Pan B W, Chen G C, et al. Long-range and high-resolution correlation optical time-domain reflectometry using a monolithic integrated broadband chaotic laser[J]. Applied Optics, 2017, 56(4): 1253-1256. DOI:10.1364/AO.56.001253
15 Wang S, Fan X Y, Liu Q W, et al. Distributed fiber-optic vibration sensing based on phase extraction from time-gated digital OFDR[J]. Optics Express, 2015, 23(26): 33301-33309. DOI:10.1364/OE.23.033301
17 Wang B, Fan X Y, Wang S, et al. Millimeter-resolution long-range OFDR using ultra-linearly 100 GHz-swept optical source realized by injection-locking technique and cascaded FWM process[J]. Optics Express, 2017, 25(4): 3514-3524. DOI:10.1364/OE.25.003514
19 Wang S, Fan X Y, Wang B, et al. Sub-THz-range linearly chirped signals characterized using linear optical sampling technique to enable sub-millimeter resolution for optical sensing applications[J]. Optics Express, 2017, 25(9): 10224-10233. DOI:10.1364/OE.25.010224
20 Koshikiya Y, Fan X Y, Ito F. Long range and cm-level spatial resolution measurement using coherent optical frequency domain reflectometry with SSB-SC modulator and narrow linewidth fiber laser[J]. Journal of Lightwave Technology, 2008, 26(18): 3287-3294. DOI:10.1109/JLT.2008.928916
21 Fan X Y, Koshikiya Y, Ito F. Phase-noise-compensated optical frequency-domain reflectometry[J]. IEEE Journal of Quantum Electronics, 2009, 45(6): 594-602. DOI:10.1109/JQE.2009.2013114
22 Dorrer C, Kilper D C, Stuart H R, et al. Linear optical sampling[J]. IEEE Photonics Technology Letters, 2003, 15(12): 1746-1748. DOI:10.1109/LPT.2003.819729
基金项目:
国家重点研发计划基金资助项目(2017YFB0405500)
导出参考文献,格式为:
引用本文:
汪帅, 王彬, 刘庆文, 等. 超高空间分辨率光反射仪关键技术进展[J]. 光电工程, 2018, 45(9): 170669.
上一篇:空芯光子带隙光纤及其传感技术