1 王廷云.特种光纤与光纤通信[M].上海:上海科学技术出版社, 2016.
3 Takeda S I, Aoki Y, Nagao Y. Damage monitoring of CFRP stiffened panels under compressive load using FBG sensors[J]. Composite Structures, 2012, 94(3): 813-819.
DOI:
10.1016/j.compstruct.2011.02.020
4 Dandridge A, Cogdell G B. Fiber optic sensors for navy applications[J]. IEEE LCS, 1991, 2(1): 81-89.
DOI:
10.1109/73.80443
5 Peng W, Banerji S, Kim Y C, et al. Investigation of dual-channel fiber-optic surface plasmon resonance sensing for biological applications[J]. OpticsLetters, 2005, 30(22): 2988-2990.
DOI:
10.1364/OL.30.002988
6 Integrated Publishing, Inc. Fabrication of optical fibers[EB/OL]. http://www.tpub.com/neets/tm/107-5.htm.
7 Dutton H S. Understanding optical communications[EB/OL]. [2009-02-19]. http://medea.uib.es/salvador/coms-optiques,addicional/ibm/ch06/06-02.Html.
8 Stadnik D. Optical fiber technology[EB/OL]. http://csrgch.pw.edu.pl/tutorials/fiber.
9 Pfuch A, Heft A, Weidl R, et al. Characterization of SiO2 thin films prepared by plasma-activated chemical vapour deposition[J]. SurfaceandCoatingsTechnology, 2006, 201(1-2): 189-196.
DOI:
10.1016/j.surfcoat.2005.11.110
10 Lefèvre H C. TheFiber-OpticGyroscope[M]. London: Artech House Inc., 1993.
11 Bergh R A, Lefevre H C, Shaw H J. All-single-mode fiber-optic gyroscope[J]. OpticsLetters, 1981, 6(4): 198-200.
DOI:
10.1364/OL.6.000198
12 Sanders G A, Szafraniec B, Liu R Y, et al. Fiber optic gyros for space, marine, and aviation applications[J]. ProceedingofSPIE, 1996, 2837: 61-71.
DOI:
10.1117/12.258208
13 Bohnert K, Gabus P, Kostovic J, et al. Optical fiber sensors for the electric power industry[J]. OpticsandLasersinEngineering, 2005, 43(3-5): 511-526.
DOI:
10.1016/j.optlaseng.2004.02.008
14 Michie C. Polarimetric optical fiber sensors[M]//Yin S Z, Ruffin P B, Yu F T S. FiberOpticSensors. Boca Raton, FL: CRC Press, 2008.
15 Lin H, Huang S C. Fiber-optics multiplexed interferometric current sensors[J]. SensorsandActuatorsA: Physical, 2005, 121(2): 333-338.
DOI:
10.1016/j.sna.2005.02.022
16 Foroni M, Ruggeri L, Poli F, et al. S+C+L band double-pass EDFA[C]// Optical Amplifiers and Their Applications/Coherent Optical Technologies and Applications. Whistler Canada Washington, DC: OSA, 2006: JWB44.
17 Nix M, Yam S S H. Highly efficient dual wavelength pumping scheme for thulium-doped fiber amplifier[C]//Proceedings of the 19th Annual Meeting of the IEEE Lasers and electro-optics Society. Montreal, Que., Canada: IEEE, 2006: 390-391.
18 Miyazaki T, Inagaki K, Karasawa Y, et al. Nd-doped double-clad fiber amplifier at 1.06 μm[J]. Journal of Lightwave Technology, 1998, 16(4): 562-566.
DOI:
10.1109/50.664064
19 Li M J. Bend-insensitive optical fibers for FTTH applications[J]. Proceedings of SPIE, 2009, 7234: 72340B.
DOI:
10.1117/12.816522
20 Cheng Y, Li S Y, Li J Y, et al. Theory research and manufacture of bend insensitive optical fiber[J]. Optics & Optoelectronic Technology, 2005, 3(6): 38-40.
DOI:
10.3969/j.issn.1672-3392.2005.06.012
21 Bao X Y, Chen L. Recent progress in distributed fiber optic sensors[J]. Sensors, 2012, 12(7): 8601-8639.
DOI:
10.3390/s120708601
24 Dong Y K, Chen L, Bao X Y. Time-division multiplexing-based BOTDA over 100km sensing length[J]. Optics Letters, 2011, 36(2): 277-279.
DOI:
10.1364/OL.36.000277
25 Wang F, Zhang X P, Lu Y G, et al. Spatial resolution analysis for discrete Fourier transform-based Brillouin optical time domain reflectometry[J]. Measurement Science and Technology, 2009, 20(2): 025202.
DOI:
10.1088/0957-0233/20/2/025202
26 Dong Y K, Zhang H Y, Chen L, et al. 2 cm spatial-resolution and 2 km range Brillouin optical fiber sensor using a transient differential pulse pair[J]. Applied Optics, 2012, 51(9): 1229-1235.
DOI:
10.1364/AO.51.001229
27 Zhao Z Y, Soto M A, Tang M, et al. Distributed shape sensing using Brillouin scattering in multi-core fibers[J]. OpticsExpress, 2016, 24(22): 25211-25223.
DOI:
10.1364/OE.24.025211
28 Zhao Z Y, Dang Y L, Tang M, et al. Spatial-division multiplexed Brillouin distributed sensing based on a heterogeneous multicore fiber[J]. OpticsLetters, 2017, 42(1): 171-174.
DOI:
10.1364/OL.42.000171
29 Zhao Z Y, Dang Y L, Tang M, et al. Spatial-division multiplexed hybrid Raman and Brillouin optical time-domain reflectometry based on multi-core fiber[J]. OpticsExpress, 2016, 24(22): 25111-25118.
DOI:
10.1364/OE.24.025111
30 Moore J P, Rogge M D. Shape sensing using multi-core fiber optic cable and parametric curve solutions[J]. OpticsExpress, 2012, 20(3): 2967-2973.
DOI:
10.1364/OE.20.002967
31 Moore J P. Shape sensing using multi-core fiber[C]//Proceedings of 2015 Optical Fiber Communications Conference and Exhibition. Los Angeles, CA, USA: IEEE, 2015: Th1C. 2.
32 NASA. Real-Time 3D Shape Rendering: CA 93523-0273[R]. USA: National Aeronautics and Space Administration, 2013.
33 Rogge M D, Moore J P. Shape sensing using a multi-core optical fiber having an arbitrary initial shape in the presence of extrinsic forces: US-Patent-8, 746, 076[P]. 2014-06-10.
34 Maughan S M, Kee H H, Newson T P. Simultaneous distributed fibre temperature and strain sensor using microwave coherent detection of spontaneous Brillouin backscatter[J]. MeasurementScienceandTechnology, 2001, 12(7): 834-842.
DOI:
10.1088/0957-0233/12/7/315
35 Soto M A, Bolognini G, Di Pasquale F. Enhanced simultaneous distributed strain and temperature fiber sensor employing spontaneous Brillouin scattering and optical pulse coding[J]. IEEE Photonics Technology Letters, 2009, 21(7): 450-452.
DOI:
10.1109/LPT.2009.2012874
36 Alahbabi M N, Cho Y T, Newson T P. Simultaneous temperature and strain measurement with combined spontaneous Raman and Brillouin scattering[J]. OpticsLetters, 2005, 30(11): 1276-1278.
DOI:
10.1364/OL.30.001276
37 Bolognini G, Soto M A, Pasquale F D. Fiber-optic distributed sensor based on hybrid Raman and Brillouin scattering employing multiwavelength Fabry-Pérot lasers[J]. IEEE Photonics Technology Letters, 2009, 21(20): 1523-1525.
DOI:
10.1109/LPT.2009.2028899
38 Bolognini G, Soto M A. Optical pulse coding in hybrid distributed sensing based on Raman and Brillouin scattering employing Fabry-Perot lasers[J]. OpticsExpress, 2010, 18(8): 8459-8465.
DOI:
10.1364/OE.18.008459
39 Taki M, Signorini A, Oton C J, et al. Hybrid Raman/Brillouin-optical-time-domain- analysis-distributed optical fiber sensors based on cyclic pulse coding[J]. OpticsLetters, 2013, 38(20): 4162-4165.
DOI:
10.1364/OL.38.004162
40 Sasaki Y, Takenaga K, Matsuo S, et al. Few-mode multicore fibers for long-haul transmission line[J]. OpticalFiberTechnology, 2017, 35: 19-27.
DOI:
10.1016/j.yofte.2016.09.017
41 Mizuno T, Takara H, Sano A, et al. Dense space-division multiplexed transmission systems using multi-core and multi-mode fiber[J]. JournalofLightwaveTechnology, 2016, 34(2): 582-592.
DOI:
10.1109/JLT.2015.2482901
42 Mizuno T, Takara H, Shibahara K, et al. Dense space division multiplexed transmission over multicore and multimode fiber for long-haul transport systems[J]. JournalofLightwaveTechnology, 2016, 34(6): 1484-1493.
DOI:
10.1109/JLT.2016.2524546
43 Kumar A, Goel N K, Varshney R K. Studies on a few-mode fiber-optic strain sensor based on LP01-LP02 mode interference[J]. JournalofLightwaveTechnology, 2001, 19(3): 358-362.
DOI:
10.1109/50.918888
44 Chen J, Lu P, Liu D M, et al. Optical fiber curvature sensor based on few mode fiber[J]. Optik-InternationalJournalforLightandElectronOptics, 2014, 125(17): 4776-4778.
DOI:
10.1016/j.ijleo.2014.04.063
45 Su J, Dong X P, Lu C X. Intensity detection scheme of sensors based on the modal interference effect of few mode fiber[J]. Measurement, 2016, 79: 182-187.
DOI:
10.1016/j.measurement.2015.09.049
46 Salik E, Medrano M, Cohoon G, et al. SMS fiber sensor utilizing a few-mode fiber exhibits critical wavelength behavior[J]. IEEEPhotonicsTechnologyLetters, 2012, 24(7): 593-595.
DOI:
10.1109/LPT.2012.2184090
47 Su J, Dong X P, Lu C X. Property of bent few-mode fiber and its application in displacement sensor[J]. IEEEPhotonicsTechnologyLetters, 2016, 28(13): 1387-1390.
DOI:
10.1109/LPT.2016.2542366
48 Luo C, Lu P, Fu X, et al. All-fiber sensor based on few-mode fiber offset splicing structure cascaded with long-period fiber grating for curvature and acoustic measurement[J]. PhotonicNetworkCommunications, 2016, 32(2): 224-229.
DOI:
10.1007/s11107-016-0604-9
49 Zhang J. Few-mode fiber based sensor in biomedical application[J]. Proceedings ofSPIE, 2015, 9480: 94800O.
DOI:
10.1117/12.2177487
50 Song K Y, Kim Y H. Characterization of stimulated Brillouin scattering in a few-mode fiber[J]. OpticsLetters, 2013, 38(22): 4841-4844.
DOI:
10.1364/OL.38.004841
51 Li A, Hu Q, Shieh W. Characterization of stimulated Brillouin scattering in a circular-core two-mode fiber using optical time-domain analysis[J]. OpticsExpress, 2013, 21(26): 31894-31906.
DOI:
10.1364/OE.21.031894
52 Wu H, Wang R X, Liu D M, et al. Few-mode fiber based distributed curvature sensor through quasi-single-mode Brillouin frequency shift[J]. Optics Letters, 2016, 41(7): 1514-1517.
DOI:
10.1364/OL.41.001514