斑马鱼行为学自动观测装置关键算法研究

莫思特, 刘天琪, 何凌. 斑马鱼行为学自动观测装置关键算法研究[J]. 光电工程, 2018, 45(8): 180101. doi: 10.12086/oee.2018.180101
引用本文: 莫思特, 刘天琪, 何凌. 斑马鱼行为学自动观测装置关键算法研究[J]. 光电工程, 2018, 45(8): 180101. doi: 10.12086/oee.2018.180101
Mo Site, Liu Tianqi, He Ling. Research on key algorithms of automatic device for observing the behavior of zebrafish[J]. Opto-Electronic Engineering, 2018, 45(8): 180101. doi: 10.12086/oee.2018.180101
Citation: Mo Site, Liu Tianqi, He Ling. Research on key algorithms of automatic device for observing the behavior of zebrafish[J]. Opto-Electronic Engineering, 2018, 45(8): 180101. doi: 10.12086/oee.2018.180101

斑马鱼行为学自动观测装置关键算法研究

  • 基金项目:
    国家自然科学基金资助项目(81371425)
详细信息
    作者简介:
    通讯作者: 何凌(1981-),女,博士,副教授,主要从事医学信号与信息处理的研究。E-mail:ling.he@scu.edu.cn
  • 中图分类号: TH79; TP39

Research on key algorithms of automatic device for observing the behavior of zebrafish

  • Fund Project: Supported by National Natural Science Foundation of China (81371425)
More Information
  • 斑马鱼行为学研究已受到越来越多的关注,其空间坐标计算是斑马鱼行为分析的基础。本文设计了一种基于双目立体视觉技术的斑马鱼行为学自动观测装置。结合p率阈值化和模式阈值化,提出了图像阈值算法。计算斑马鱼图像轮廓像素坐标的平均值,得到单条斑马鱼的水平二维坐标XY。当不同斑马鱼的Y坐标差异较大时,对两台摄像机各自得到的斑马鱼的Y坐标分别按大小排序,同一序号即为同一目标;当Y坐标大小较为接近时,应用最小距离法识别同一斑马鱼。根据折射定理和观测装置结构,推导出斑马鱼三维空间坐标计算公式。算法复杂度分析显示本文提出的算法具有较少的运行时间。通过预设多条模型鱼的位置进行测试,计算结果与预设位置接近,验证了本文提出算法的正确性。

  • Overview: Zebrafish, which is highly analogous to humans in terms of physiology and genetics, is widely used in the fields of fertility, genetics, behavioral science and molecular biology. More and more researchers have been attracted by the zebrafish behaviors. An automatic device for observing the behavior of zebrafish was designed based on the binocular stereo vision technology. The zebrafish behavioral characteristics can be calculated and analyzed by the real-time video data that is collected from two digital cameras, and the algorithm of 3D coordinate calculation is the basis of zebrafish behavioral analysis. According to methods of P-rate threshold and pattern threshold, the image threshold algorithm was proposed. Image threshold method was proposed according to the image threshold, and the image segmentation was calculated based on the threshold image. The image contour of zebrafish was calculated based on the image segmentation, and then the horizontal X and Y coordinates of single zebrafish were figured out by calculating the average of pixel coordinates of image contour. If the difference of Y coordinate values among different zebrafishes is large, two groups of zebrafishes will be set up separately according to the Y coordinate values decided by each camera, and the same serial number in two groups means the same target. If the difference of Y coordinate is small, the same target in different cameras was identified by the method of minimum distance. A three-dimensional Cartesian coordinate system was constructed. The straight line of zebrafish was calculated according to refraction principle and the optical path of zebrafish above the surface of the water, which was determined by the right camera. At the same time, the zebrafish was on the plane that was calculated by the optical path of zebrafish above the surface of the water, which was determined by the left camera. The formula of three-dimensional coordinates was conducted based on the straight line and the plane. The behaviors, such as stillness, direction, speed, etc., were calculated based on the change of zebrafish coordinates in unit time, and then the analyses of the behavior characteristics of zebrafish were put forward. Algorithm analysis shows that the running time of the algorithm proposed in the paper is saved. Five stationary model fish were randomly placed in different locations, and the coordinates of each model fish were calculated. The difference between the calculated results and the actual position shows that the maximum error is less than 12 mm and the maximum error rate is about 12%, which could meet the needs of the zebrafish experiment.

  • 加载中
  • 图 1  斑马鱼行为学自动观测装置组成结构

    Figure 1.  Structure of the automatic device for observing the behavior of zebrafish

    图 2  图像阈值化算法流程图

    Figure 2.  Flow chart of image threshold algorithm

    图 3  斑马鱼平面坐标算法流程图

    Figure 3.  Flow chart of zebrafish plane coordinate algorithm

    图 4  三维坐标示意图

    Figure 4.  Diagram of three-dimensional coordinates

    表 1  多条模型鱼静止坐标实验数据

    Table 1.  The static coordinate experimental data of model fishs

    设置坐标/mm 计算坐标/mm 计算误差/mm
    X Y Z X Y Z X Y Z
    1号鱼 84 -59 -82 96 -56 -88 12 3 -6
    2号鱼 -33 -29 -44 -25 -31 -48 8 -2 -4
    3号鱼 -77 64 -111 -77 70 -112 0 6 -1
    4号鱼 -29 -96 -28 -31 -96 -33 -2 0 -5
    5号鱼 -121 -91 -103 -123 -94 -96 -2 -3 7
    下载: 导出CSV

    表 2  单条模型鱼行为分析实验数据

    Table 2.  Experimental data of behavior analysis in single model fish

    开始坐标/mm 结束坐标/mm 方向 距离/mm 速度/(mm·s-1) 行为
    X0 Y0 Z0 X1 Y1 Z1 α β
    第1次 -4 3 -140 100 0 -145 -2 -2 104 20.7 向右
    第2次 9 -1 -155 -90 3 -155 177 0 98 19.7 向左
    第3次 5 5 -145 8 101 -140 91 3 97 19.3 向前
    第4次 5 -8 147 5 -106 -151 269 -3 98 19.7 向后
    第5次 -1 -6 -159 2 -3 -62 51 87 103 20.7 向上
    下载: 导出CSV
  • [1]

    Zon L I, Peterson R T. In vivo drug discovery in the zebrafish[J]. Nature Reviews Drug Discovery, 2005, 4(1): 35-44. doi: 10.1038/nrd1606

    [2]

    孙智慧, 贾顺姬, 孟安明.斑马鱼:在生命科学中畅游[J].生命科学, 2006, 18(5): 431-436. https://www.leica-microsystems.com/cn/%E5%BA%94%E7%94%A8/%E7%94%9F%E5%91%BD%E7%A7%91%E5%AD%A6%E7%A0%94%E7%A9%B6/%E6%96%91%E9%A9%AC%E9%B1%BC%E7%A0%94%E7%A9%B6/

    Sun Z H, Jia S J, Meng A M. Zebrafish: swimming in life sciences[J]. Chinese Bulletin of Life Sciences, 2006, 18(5): 431-436. https://www.leica-microsystems.com/cn/%E5%BA%94%E7%94%A8/%E7%94%9F%E5%91%BD%E7%A7%91%E5%AD%A6%E7%A0%94%E7%A9%B6/%E6%96%91%E9%A9%AC%E9%B1%BC%E7%A0%94%E7%A9%B6/

    [3]

    王跃样, 钟涛, 宋后燕.斑马鱼发育遗传学研究进展[J].国外医学遗传学分册, 2004, 27(4): 220-223. http://web.pkusz.edu.cn/lin

    Wang Y X, Zhong T, Song H Y. Advances in genetics of zebrafish development[J]. Section of Genetics Foreign Medical Sciences, 2004, 27(4): 220-223. http://web.pkusz.edu.cn/lin

    [4]

    Linney E, Upchurch L, Donerly S. Zebrafish as a neurotoxicological model[J]. Neurotoxicology and Teratology, 2004, 26(6): 709-718. doi: 10.1016/j.ntt.2004.06.015

    [5]

    Shin J T, Fishman M C. From zebrafish to human: modular medical models[J]. Annual Review of Genomics and Human Genetics, 2002, 3: 311-340. doi: 10.1146/annurev.genom.3.031402.131506

    [6]

    马健娟, 何志旭, 舒莉萍, 等. HOXC4基因在斑马鱼早期胚胎发育过程中的表达[J].四川大学学报(医学版), 2013, 44(3): 371-374. http://www.cqvip.com/QK/90551A/201303/45720682.html

    Ma J J, He Z X, Shu L P, et al. Expression of HOXC4 gene during early development in zebrafish[J]. Journal of Sichuan University (Medical Science Edition), 2013, 44(3): 371-374. http://www.cqvip.com/QK/90551A/201303/45720682.html

    [7]

    Engeszer R E, Ryan M J, Parichy D M. Learned social preference in zebrafish[J]. Current Biology, 2004, 14(10): 881-884. doi: 10.1016/j.cub.2004.04.042

    [8]

    Vitebsky A, Reyes R, Sanderson M J, et al. Isolation and characterization of the laure olfactory behavioral mutant in the zebrafish, Danio rerio[J]. Developmental Dynamics, 2005, 234(1): 229-242. doi: 10.1002/(ISSN)1097-0177

    [9]

    Gil Barcellosa L J, Rittera F, Kreutz L C, et al. Whole-body cortisol increases after direct and visual contact with a predator in zebrafish, Danio rerio[J]. Aquaculture, 2007, 272(1-4): 774-778. doi: 10.1016/j.aquaculture.2007.09.002

    [10]

    Kily L J M, Cowe Y C M, Hussain O, et al. Gene expression changes in a zebrafish model of drug dependency suggest conservation of neuro-adaptation pathways[J]. Journal of Experimental Biology, 2008, 211(10): 1623-1634. doi: 10.1242/jeb.014399

    [11]

    方芳, 余林中.斑马鱼——一种可用于中药抗焦虑药研究的模式生物[J].中药药理与临床, 2011, 27(1): 104-106. http://mall.cnki.net/magazine/article/ZYYL201202061.htm

    Fang F, Yu L Z. Zebrafish-A model organism that can be used to study biological medicine anxiolytics[J]. Pharmacology and Clinics of Chinese Materia Medica, 2011, 27(1): 104-106. http://mall.cnki.net/magazine/article/ZYYL201202061.htm

    [12]

    王卓, 蒲韵竹, 陈怡君, 等.敌敌畏对斑马鱼运动行为的影响[J].国际药学研究杂志, 2013, 40(3): 327-330. http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_gwyx-yxfc201303016

    Wang Z, Pu Y Z, Chen Y J, et al. Influence of dichlorvos on zebrafish behavior[J]. Journal of International Pharmaceutical Research, 2013, 40(3): 327-330. http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_gwyx-yxfc201303016

    [13]

    黄文有, 徐向民, 吴凤岐, 等.核环境水下双目视觉立体定位技术研究[J].光电工程, 2016, 43(12): 28-33. doi: 10.3969/j.issn.1003-501X.2016.12.005

    Huang W Y, Xu X M, Wu F Q, et al. Research of underwater binocular vision stereo positioning technology in nuclear condition[J]. Opto-Electronic Engineering, 2016, 43(12): 28-33. doi: 10.3969/j.issn.1003-501X.2016.12.005

    [14]

    刘佳, 傅卫平, 王雯, 等.基于改进SIFT算法的图像匹配[J].仪器仪表学报, 2013, 34(5): 1107-1112. https://www.wenkuxiazai.com/doc/515b7fb8a0116c175f0e48b2.html

    Liu J, Fu W P, Wang W, et al. Image matching based on improved SIFT algorithm[J]. Chinese Journal of Scientific Instrument, 2013, 34(5): 1107-1112. https://www.wenkuxiazai.com/doc/515b7fb8a0116c175f0e48b2.html

    [15]

    许允喜, 陈方.基于多帧序列运动估计的实时立体视觉定位[J].光电工程, 2016, 43(2): 89-94. doi: 10.3969/j.issn.1003-501X.2016.02.015

    Xu Y X, Chen F. Real-time stereo visual localization based on multi-frame sequence motion estimation[J]. Opto-Electronic Engineering, 2016, 43(2): 89-94. doi: 10.3969/j.issn.1003-501X.2016.02.015

    [16]

    白廷柱, 侯喜报.基于SIFT算子的图像匹配算法研究[J].北京理工大学学报, 2013, 33(6): 622-627. http://cdmd.cnki.com.cn/Article/CDMD-10533-1012475169.htm

    Bai T Z, Hou X B. An improved image matching algorithm based on SIFT[J]. Transactions of Beijing Institute of Technology, 2013, 33(6): 622-627. http://cdmd.cnki.com.cn/Article/CDMD-10533-1012475169.htm

    [17]

    莫思特, 李碧雄.基于AD9923A的ICX274模拟前端电路设计[J].光电工程, 2009, 36(10): 141-145. doi: 10.3969/j.issn.1003-501X.2009.10.027

    Mo S T, Li B X. Design of analog front end circuit for ICX274 based on AD9923A[J]. Opto-Electronic Engineering, 2009, 36(10): 141-145. doi: 10.3969/j.issn.1003-501X.2009.10.027

    [18]

    莫思特, 吴志红. 200万像素数字摄像机设计及关键技术研究[J].光电工程, 2009, 36(5): 117-121. doi: 10.3969/j.issn.1003-501X.2009.05.022

    Mo S T, Wu Z H. Design of 2.0 mega pixels digital video camera and key technology[J]. Opto-Electronic Engineering, 2009, 36(5): 117-121. doi: 10.3969/j.issn.1003-501X.2009.05.022

  • 加载中

(4)

(2)

计量
  • 文章访问数:  6842
  • PDF下载数:  2660
  • 施引文献:  0
出版历程
收稿日期:  2018-03-04
修回日期:  2018-06-07
刊出日期:  2018-08-01

目录

/

返回文章
返回