高频摆镜的多时序闪频激光测试

蔡怀宇, 梁志敏, 黄战华, 等. 高频摆镜的多时序闪频激光测试[J]. 光电工程, 2018, 45(7): 180052. doi: 10.12086/oee.2018.180052
引用本文: 蔡怀宇, 梁志敏, 黄战华, 等. 高频摆镜的多时序闪频激光测试[J]. 光电工程, 2018, 45(7): 180052. doi: 10.12086/oee.2018.180052
Cai Huaiyu, Liang Zhimin, Huang Zhanhua, et al. Multi time sequence flashing laser test for high frequency swing mirror[J]. Opto-Electronic Engineering, 2018, 45(7): 180052. doi: 10.12086/oee.2018.180052
Citation: Cai Huaiyu, Liang Zhimin, Huang Zhanhua, et al. Multi time sequence flashing laser test for high frequency swing mirror[J]. Opto-Electronic Engineering, 2018, 45(7): 180052. doi: 10.12086/oee.2018.180052

高频摆镜的多时序闪频激光测试

详细信息
    作者简介:
    通讯作者: 梁志敏(1989-),男,硕士研究生,主要从事光电检测技术方面的研究。E-mail:liangzhimin@tju.edu.cn
  • 中图分类号: TN206;TH712

Multi time sequence flashing laser test for high frequency swing mirror

More Information
  • 为解决目前摆镜检测系统采样率低,难以满足高频摆镜测量需求的问题,根据等效采样原理,设计了基于高速激光闪频技术的多时序高精度非接触式摆镜检测系统。该系统首先利用激光脉冲控制电路实现多时序的闪频激光照明,在CCD靶面上获得光斑位置图像;然后,根据激光光斑成像位置计算摆镜的摆角,并依照相邻光斑位置之间的时间间隔得到角速度。实验结果表明:检测系统的角度分辨力为0.005°,动态采样时间间隔可以达到百微秒量级,角速度测量误差小于±7%。该系统提高了摆镜测量的采样率,满足了高频摆镜测试的要求。

  • Overview: The angular velocity of swing mirror and its uniformity have an important influence on the working quality of the system. Some research institutions have studied the angle measurement of the swing mirror. But for the dynamic swing mirror, especially the high frequency swing mirror, because of the CCD frame rate, the common test system cannot meet the requirement of high sampling rate in the measurement process. In order to solve the problem of low sampling rate in current swing mirror detection system, a multi time series high accuracy non-contact detection system for swing mirror is designed, which is based on the principle of equivalent sampling.

    In the measuring system, when the laser is reflected by the swing mirror, a light spot is obtained on the receiving screen. The position of the spot moves with the swing of the swing mirror. The angle of the swing mirror is calculated by the position of the laser spot, and the angular velocity is obtained according to the adjacent angles and the interval time. In order to adapt to high frequency swing mirror, we realized flashing laser lighting with the designed laser pulse control circuit to replace the camera exposure time in the general measurement systems with the laser pulse duration, and acquired the separate light spot images by adjusting the laser spot size and the pulse cycle. At the same time, in order to improve the sampling rate of the system, we used time sequence logic control circuit to generate multi time pulse signal and achieve the equivalent sampling, so as to improve the sampling rate of the system and meet the test demands.

    In order to confirm the feasibility of the test method, the test system was set up and was used to test the swing mirror at different working frequencies. The experimental results show that the angle resolution of the detection system is 0.005°. The time resolution can reach the microsecond order, and the angular velocity measurement error on different frequencies is less than ±7%. In summary, we believe this system and method can improve the sampling rate of the swing mirror measurement and have the adjustable sampling frequency can meet the dynamic non-contact measurement requirements with high frequency angular speed and amplitude and other parameters under different working frequencies.

  • 加载中
  • 图 1  测量原理

    Figure 1.  Principle of the measurement system

    图 2  多时序闪频激光反射点测量原理

    Figure 2.  Principle of the multi time flash laser reflection point measurement

    图 3  摆镜角度测量系统结构示意图

    Figure 3.  Scheme of angle measurement system for swing mirro

    图 4  CPLD时序逻辑图

    Figure 4.  The logic of CPLD time series

    图 5  测量系统实物图

    Figure 5.  Photo of measurement system

    图 6  正程光斑图像。(a)无延迟;(b)延迟200 μs;(c)延迟400 μs;(d)延迟600 μs;(e)延迟800 μs

    Figure 6.  Photos of light spots in positive direction. (a) No delay; (b) Delay 200 μs; (c) Delay 400 μs; (d) Delay 600 μs; (e) Delay 800 μs

    图 7  返程光斑图像。(a)无延迟;(b)延迟200 μs;(c)延迟400 μs;(d)延迟600 μs;(e)延迟800 μs

    Figure 7.  Photos of light spots in negative direction. (a) No delay; (b) Delay 200 μs; (c) Delay 400 μs; (d) Delay 600 μs; (e) Delay 800 μs

    图 8  摆镜50 Hz时测量值。(a)角度;(b)角速度

    Figure 8.  Measured values of swing mirror at 50 Hz. (a) Angle; (b) Angular velocity

    图 9  摆镜25 Hz时测量值。(a)角度;(b)角速度

    Figure 9.  Measured values of swing mirror at 25 Hz. (a) Angle; (b) Angular velocity

    表 1  转角位置与光斑位移

    Table 1.  Angle positions and spot displacements

    角度值/(°) 光斑位移/mm 角度值/(°) 光斑位移/mm
    0.00 0.0000 0.00 0.0000
    0.50 8.6498 -0.50 -8.6465
    1.00 17.3091 -1.00 -17.3131
    1.50 25.9429 -1.50 -25.9805
    2.00 34.9149 -2.00 -34.9716
    2.50 43.4685 -2.50 -43.6283
    下载: 导出CSV

    表 2  测量结果分析

    Table 2.  Analysis of measured results

    摆镜状态 摆镜角速度/(°·ms-1) 测量平均值/(°·ms-1) 标准差/(°·ms-1) 变异系数/%
    50 Hz正程 0.50 0.5043 0.0142 2.82
    50 Hz返程 -0.50 -0.5030 0.0128 -2.55
    25 Hz正程 0.25 0.2526 0.0072 2.83
    25 Hz返程 -0.25 -0.2518 0.0071 -2.82
    下载: 导出CSV
  • [1]

    许宝忠, 刘铁根, 王萌, 等.空间自由曲面激光标刻技术研究[J].中国激光, 2010, 37(8): 2165–2169. http://www.cqvip.com/QK/95389X/201008/34917277.html

    Xu B Z, Liu T G, Wang M, et al. Research on laser marking technology for free-form surface[J]. Chinese Journal of Lasers, 2010, 37(8): 2165–2169. http://www.cqvip.com/QK/95389X/201008/34917277.html

    [2]

    赵怀学, 赵建科, 田留德, 等.转镜式高速摄影机角跟踪精度的检测[J].光学精密工程, 2015, 23(12): 3303–3308. http://xueshu.baidu.com/s?wd=paperuri%3A%28fb402a7ffad5d38c2104a67d6725db39%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fkns.cnki.net%2FKCMS%2Fdetail%2Fdetail.aspx%3Ffilename%3Dgxjm201512003%26dbname%3DCJFD%26dbcode%3DCJFQ&ie=utf-8&sc_us=4747588875377603176

    Zhao H X, Zhao J K, Tian L D, et al. Detection of angular tracing precision of rotating mirror house in streak camera[J]. Optics and Precision Engineering, 2015, 23(12): 3303–3308. http://xueshu.baidu.com/s?wd=paperuri%3A%28fb402a7ffad5d38c2104a67d6725db39%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fkns.cnki.net%2FKCMS%2Fdetail%2Fdetail.aspx%3Ffilename%3Dgxjm201512003%26dbname%3DCJFD%26dbcode%3DCJFQ&ie=utf-8&sc_us=4747588875377603176

    [3]

    Ravindra Singh R, Mudgil A, Prakash C, et al. Precision gimballed mirror control in remote sensing LIDAR for environmental monitoring[J]. Proceedings of SPIE, 2006, 6409: 64091F. doi: 10.1117/12.694397

    [4]

    黄战华, 张超, 蔡怀宇, 等.基于二轴转台的运动目标球幕投影联合控制[J].光电工程, 2014, 41(9): 32–37. http://www.cqvip.com/QK/90982A/201409/662506512.html

    Huang Z H, Zhang C, Cai H Y, et al. The research of joint control algorithm of moving target dome projection based on two-axis turntable[J]. Opto-Electronic Engineering, 2014, 41(9): 32–37. http://www.cqvip.com/QK/90982A/201409/662506512.html

    [5]

    浦昭邦, 陶卫, 张琢.角度测量的光学方法[J].光学技术, 2002, 28(2): 168–171. http://www.cqvip.com/QK/91230X/2002002/6087011.html

    Pu Z B, Tao W, Zhang Z. Angle measurement with optical methods[J]. Optical Technique, 2002, 28(2): 168–171. http://www.cqvip.com/QK/91230X/2002002/6087011.html

    [6]

    Filatov Y V, Loukianov D P, Probst R. Dynamic angle measurement by means of a ring laser[J]. Metrologia, 1997, 34(4): 343–351. doi: 10.1088/0026-1394/34/4/7

    [7]

    Ikram M, Hussain G. Michelson interferometer for precision angle measurement[J]. Applied Optics, 1999, 38(1): 113–120. doi: 10.1364/AO.38.000113

    [8]

    王雯倩, 刘国栋, 浦昭邦, 等.利用面阵CCD测量小角度的研究[J].半导体光电, 2004, 25(2): 134–135, 138. http://cdmd.cnki.com.cn/Article/CDMD-10614-2005096870.htm

    Wang W Q, Liu G D, Pu Z B, et al. Measurement of two-dimensional small angle by means of matrix CCD[J]. Semiconductor Optoelectronics, 2004, 25(2): 134–135, 138. http://cdmd.cnki.com.cn/Article/CDMD-10614-2005096870.htm

    [9]

    史亚莉, 高云国, 张磊, 等.提高CCD激光自准直测角精度的硬件方法[J].光学精密工程, 2008, 16(4): 726–732. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxjmgc200804025

    Shi Y L, Gao Y G, Zhang L, et al. Improvement of measuring accuracy of CCD laser autocollimator by changing hardware parameters[J]. Optics and Precision Engineering, 2008, 16(4): 726–732. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxjmgc200804025

    [10]

    张国玉, 姜会林, 徐熙平, 等.红外地球敏感器扫描镜摆角激光动态测试方法[J].光学学报, 2007, 27(5): 875–881. http://www.cqvip.com/qk/95626x/200705/24491762.html

    Zhang G Y, Jiang H L, Xu X P, et al. Laser dynamic testing method for swing angle of scanning mirror of infrared earth sensor[J]. Acta Optica Sinica, 2007, 27(5): 875–881. http://www.cqvip.com/qk/95626x/200705/24491762.html

    [11]

    王洋, 颜昌翔, 胡春晖, 等.非接触式扫描反射镜转角测量系统[J].光学精密工程, 2014, 22(4): 850–855. http://www.irgrid.ac.cn/handle/1471x/930588?mode=full

    Wang Y, Yan C X, Hu C H, et al. Non-contact rotation angle measurement system for scanning mirrors[J]. Optics and Precision Engineering, 2014, 22(4): 850–855. http://www.irgrid.ac.cn/handle/1471x/930588?mode=full

    [12]

    邱渡裕, 田书林, 叶芃, 等.基于并行结构的随机等效时间采样技术研究与实现[J].仪器仪表学报, 2014, 35(7): 1669–1675. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yqyb201407030

    Qiu D Y, Tian S L, Ye P, et al. Research and implementation of a random equivalent time sampling based on parallel structure[J]. Chinese Journal of Scientific Instrument, 2014, 35(7): 1669–1675. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yqyb201407030

    [13]

    金占雷. CCD光斑质心算法的误差分析[J].航天返回与遥感, 2011, 32(1): 38–44. http://www.cqvip.com/QK/90982A/201106/38127866.html

    Jin Z L. Error analysis of centroid algorithm based on CCD[J]. Spacecraft Recovery & Remote Sensing, 2011, 32(1): 38–44. http://www.cqvip.com/QK/90982A/201106/38127866.html

  • 加载中

(9)

(2)

计量
  • 文章访问数:  8089
  • PDF下载数:  3057
  • 施引文献:  0
出版历程
收稿日期:  2018-01-09
修回日期:  2018-03-23
刊出日期:  2018-07-01

目录

/

返回文章
返回